首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

2.
The conditional time averaged gradient method was used to measure air-surface exchange of nitrogen and sulphur compounds at a semi-alpine site in Southern Norway. Dry deposition velocities were then obtained from the bi-weekly concentration gradient measurements. Annual deposition velocities were found to be 1.4, 11.8 and 4.0 mm s(-1) for NH3, HNO3 and SO2, respectively, if all data were included, and to be 10.8, 11.8 and 13.0 mm s(-1), respectively, if only positive values were included. Measured deposition velocities were compared to two sets of values estimated from a big-leaf dry deposition module applying to two different land types (short grass and forbs, and tundra), driven by measured micrometeorological parameters. The deposition module gives reasonable values for this site throughout the year, but does not reproduce the large variability as shown in the measured data. No apparent seasonal variations were found from either measurements or module estimates due to the very low productivity of the studied area.  相似文献   

3.
Data from the UK national air-quality monitoring network are used to calculate an annual mass budget for ozone (O3) production and loss in the UK boundary layer during 1996. Monthly losses by dry deposition are quantified from 1 km x 1 km scale maps of O(3) concentration and O(3) deposition velocities based on a big-leaf resistance analogy. The quantity of O(3) deposition varies from approximately 50 Gg-O(3) month(-1) in the winter to over 200 Gg-O(3) month(-1) in the summer when vegetation is actively absorbing O(3). The net O(3) production or loss in the UK boundary layer is found by selecting days when the UK is receiving "clean" Atlantic air from the SW to NW. In these conditions, the difference in O(3) concentration observed at Mace Head and a rural site on the east coast of the UK indicates the net O(3) production or loss within the UK boundary layer. A simple box model is then used to convert the concentration difference into a mass. The final budget shows that for most of the year the UK is a net sink for O(3) (-25 to -800 Gg-O(3) month(-1)) with production only exceeding losses in the photochemically active summer months (+45 Gg-O(3) month(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号