首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
李纪华  王正芳  郑正 《环境工程》2012,(Z2):41-43,129
曝气生物滤池(BAF)是在普通生物滤池的基础上,借鉴给水滤池工艺开发的污水处理新工艺。以炉渣为填料采用前置反硝化曝气生物滤池处理模拟生活污水,研究了前置反硝化曝气生物滤池处理生活污水的启动状况,考察了启动过程中COD、NH4+-N等主要污染物的去除情况。试验结果表明,在水力负荷为1.74m/h、回流比150%、气水比为3∶1的条件下,COD和NH4+-N分别在35d和45d内得到了有效地去除。其中,COD出水浓度降到30mg/L以下,去除率稳定在85%以上;NH4+-N出水浓度降到10mg/L以下,去除率稳定在65%以上。研究结果表明选用炉渣作填料的前置反硝化曝气生物滤池在相对较短的时间内启动效果良好。  相似文献   

2.
针对制革综合废水有机污染浓度高的特点,采用厌氧折流板反应器(ABR)-曝气生物滤池(BAF)新工艺处理,试验研究了ABR和BAF的启动以及水力停留时间(HRT)、有机负荷及其他因素对处理效果的影响。试验结果表明:ABR在HRT为12 h、水温25~37℃,BAF在HRT为2.5 h、DO≥2.0 mg/L的条件下,组合工艺对制革综合废水的COD平均去除率达88%,出水COD、SS、色度、总铬等指标达DB 44/26—2001《广东省地方标准水污染物排放限值》一级标准。  相似文献   

3.
该文建立了一套中试规模"厌氧/缺氧/短时好氧(A2O)-曝气生物滤池(BAF)工艺",日处理量19.2 m3/d,考察了BAF池硝化负荷对系统处理性能的影响。该工艺由A2O池、中沉池和BAF池三部分构成,其中,A2O段HRT为4.0 h,厌氧/缺氧/好氧体积比为1∶2∶1;BAF池最初只有1座,后来改为2座,硝化负荷从0.8 kg NH4+-N/(m3·d)降至0.4 kg NH4+-N/(m3·d),硝化液回流比100%。结果表明,随着硝化负荷的降低,系统去除效果明显改善,氨氮和总氮去除率分别从66.2%和51.7%提高到88.0%和69.9%,SS去除率也从55.6%升至82.3%;COD去除效果保持稳定,平均去除率82.5%。可见,BAF容积负荷是影响A2O-BAF工艺处理性能的关键参数,将硝化负荷控制在0.4 kg NH4+-N/(m3·d)可保证系统出水达到《城镇污水处理厂污染物排放标准》一级A标准。  相似文献   

4.
曝气生物滤池中COD去除影响因素试验分析   总被引:2,自引:1,他引:1  
以上向流曝气生物滤池为研究对象,对COD的去除效果及影响因素进行了探讨.试验结果表明:上向流曝气生物滤池对COD去除效果具有一定的抗冲击负荷能力,在进水COD质量浓度均值为68.3mgL时,出水氨氮质量浓度均值为26.1 mg/L,去除率为61.8%,去除效果稳定.不同操作条件对COD去除效果的影响为:曝气生物滤池只需较低的曝气量,在V(气):V(水)=5:1的情况下即可获得对有机物较高的去除效率;曝气生物滤池时有机物的降解主要发生在进水端0~60cm范围内;水力负荷在0.5~1.5 m3/(m2·h)的变化范围内.反应器对有机物去除能力基本不受影响;水力负荷和进水COD等2种途径带来的COD容积负荷变化对其去除率没有明显的区别,并且有很强的抗冲击负荷的能力.  相似文献   

5.
臭氧-曝气生物滤池处理港口化学品洗舱废水   总被引:3,自引:1,他引:2  
采用臭氧-曝气生物滤池工艺对广东某港口化学品废水进行处理。针对此类废水COD高、水质变化大、成分复杂的特点,探讨了废水的初始pH、臭氧投加量和催化剂等因素对臭氧氧化的影响,臭氧对废水可生化性的改善情况、不同曝气生物滤池停留时间对废水COD去除率的影响。试验结果表明:进水化学需氧量(COD)约1700mg/L,在臭氧投加量538~716mg/L,BAF水力停留时间30h的情况下,经组合工艺处理后出水COD低于250mg/L,处理后废水达到排放城市污水处理厂的废水接纳标准。  相似文献   

6.
采用臭氧-曝气生物滤池组合工艺对石化废水厂二级出水进行深度处理,系统探讨了pH值对臭氧氧化单元的影响,组合工艺对废水中COD、UV254的去除效果,对废水中有机物相对分子质量分布以及荧光物质含量的影响.结果表明,在臭氧投加量为10 mg·L-1,接触时间为4 min,pH值偏碱性时,臭氧预氧化石化二级出水效果较好.臭氧氧化能将大分子有机物转化为小分子物质,使得相对分子质量小于1 000的有机物比例增加约15%,有效提高了废水的可生化性,有利于后续曝气生物滤池的运行.在曝气生物滤池的停留时间为3 h,气水比为3∶1时,组合工艺对COD、UV254的去除率分别达到40.8%和45.8%.在最佳运行条件下,进水平均COD为86.5 mg·L-1时,组合工艺出水平均COD为49.4 mg·L-1.  相似文献   

7.
深度处理印染废水填料的优选   总被引:1,自引:1,他引:0  
龚鸣  徐乐中 《环境工程》2015,33(7):51-55
采用间歇式曝气生物滤池(IABF)对印染废水进行深度处理,从6种填料中优选出活性炭-火山岩混合填料进行工况研究并与常规陶粒曝气生物滤池(BAF)进行对比,结果表明:活性炭填料和火山岩填料在水中发挥了良好的协同作用,为不同微生物菌群的构建和负载提供了良好载体。采用粒径为3~5 mm的混合填料,气水比为4∶1,HRT=10 h,曝停周期为3 h,曝气停曝时间比为3∶1,进水COD为80~110 mg/L,色度为70~90度,氨氮为8~11 mg/L,TN为15~20 mg/L时,混合填料间歇式曝气生物滤池对COD、色度、氨氮、TN的去除率分别为63.2%、70.4%、86.2%、55.3%。相比常规陶粒填料曝气生物滤池在COD、色度、TN方面提升了9.8%、12.8%、39.9%,同时节省了部分能源。为难降解印染废水的深度处理提供了新思路。  相似文献   

8.
采用上流式曝气生物活性炭滤池(UABACF)处理PVA退浆废水,在固定水力负荷为0.076 m3/(m2·h)条件下,研究气水比对PVA、COD和浊度去除效果的影响,分析污染物去除、微生物量、微生物活性在滤柱高度方向的沿程分布特征。气水比对COD去除率影响最大、PVA次之,对浊度去除的影响最小,在气水比为4∶1条件下,PVA、COD和浊度的去除率分别为66.65%、89.60%和80.25%。1.3 cm滤柱高度以下为污染物高效去除区域,系统微生物量和微生物脱氢酶活性在此高度范围内逐渐降低,而后基本保持稳定状态。生物滤池对PVA主要依靠生物吸附作用去除,生物降解部分仅占被吸附PVA的24.9%。  相似文献   

9.
固定化微生物技术处理城市微污染河水研究   总被引:2,自引:0,他引:2  
瞿艳芝  刘操  廖日红  姚磊  叶正芳  王培京 《环境科学》2009,30(11):3306-3310
将陶粒、功能化聚氨酯泡沫(FPUFS)、阿科蔓柔性填料、人工水草等4种不同载体与高效复合菌剂BP35应用于曝气生物滤池(BAF)构成固定化曝气生物滤池(G-BAF),研究固定化微生物技术对城市微污染河水的净化效果.4种G-BAF对NH4+-N、叶绿素和浊度的去除率分别为83.0%~89.0%、77.5%~89.0%和84.4%~95.2%,均大于对COD、UV254和TP的去除效果.FPUFS含有羟基、环氧基和酰胺基等反应性基团,对酶和微生物的负载量大,因此FPUFS-G-BAF对污染物的去除效率高于其余3种G-BAF.水力停留时间(HRT)对4种G-BAF去除NH4+-N的影响均不显著,而对COD的去除效果影响较大.当溶解氧(DO)浓度由2 mg/L升至4 mg/L时,4种G-BAF对COD和NH4+-N的去除率分别提高了11.9%~18.0%和12.7%~16.1%.GC-MS分析结果表明,G-BAF工艺能有效地将河水中分子质量较大的难降解有机物降解为小分子物质.  相似文献   

10.
吴宣  谭科艳  胡希佳  顾运  杨宏 《环境科学》2014,35(4):1366-1371
在18.0~22.3℃条件下,以含镉(Cd2+)废水为研究对象,首先对分离纯化出的硫酸盐还原菌(SRB)采用细胞包埋固定化技术同沸石填料制成具有生物活性的载体,建立硫酸盐还原生物滤池,培养驯化完成后进行了生物滤池对废水中Cd2+、COD和SO2-4的去除效果试验研究.结果表明,利用SRB采用生物滤池的运行方式可以对废水中的重金属镉(Cd2+)进行良好地去除.当滤速(V)=0.4 m·h-1时,生物滤池对进水Cd2+浓度≤15 mg·L-1的废水处理效果最好.在稳定运行期间,生物滤池对Cd2+、COD和SO2-4的去除率分别在99%、75%和50%以上,经过生物滤池处理后出水中Cd2+含量低于0.1 mg·L-1,达到国家《污水排入城镇下水道水质标准》(CJ 343-2010)中对Cd2+的排放要求.生物滤池对Cd2+、COD和SO2-4的去除效果主要集中在60 cm以上的空间.当V<0.6 m·h-1时,滤池对Cd2+有高效稳定的去除效果.  相似文献   

11.
刘俊峰  范举红  刘锐  陈吕军  张永明 《环境科学》2014,35(12):4596-4601
针对某印染工业园区污水处理厂二级生化处理出水,采用处理规模为15 t·d-1的中试试验,研究了活性炭填料和悬浮填料曝气生物滤池沿程的污染物浓度变化,探讨了用低价、轻质悬浮填料替代活性炭的可行性.结果表明,在进水COD和色度分别为50.2 mg·L-1和58倍时,活性炭和悬浮填料曝气生物滤池最终出水COD和色度分别为35.0 mg·L-1、18倍和44.3mg·L-1和26倍,均可达到城镇污水厂污染物排放标准(GB 18918-2002)中的一级A排放标准要求,但是悬浮填料曝气生物滤池达标所需沿程的高度为2 400 mm,高于活性炭曝气生物滤池的1 800 mm.悬浮填料曝气生物滤池对色度、总氮、氨氮的去除效果及沿程变化趋势与活性炭曝气生物滤池相仿,但COD去除效果不佳,主要是与其生物量少有关.因此,用悬浮填料替代活性炭在该污水厂是可行的,但仍需要对填料大小和材质进行优选,增大生物量,必要时可考虑使用活性炭和悬浮填料的组合工艺减少造价成本.  相似文献   

12.
O3-BAF深度处理制革废水中沿程污染物降解规律   总被引:2,自引:2,他引:0  
针对浙江省某制革园区污水处理厂二级生化出水,开展了处理规模36 t.d-1的臭氧-曝气生物滤池中试研究,考察了不同填料曝气生物滤池沿程高度上污染物的降解规律.结果表明:活性炭曝气生物滤池在沿程1 500 mm处的平均出水COD和色度分别为55.4 mg·L-1和12.6倍,混合填料曝气生物滤池在沿程1 800 mm处的平均出水COD和色度分别为55.6 mg·L-1和9.4倍,出水达到《城镇污水厂污染物排放标准》(GB 18918-2002)中的一级B排放要求.陶粒曝气生物滤池在整个沿程高度上COD和色度变化幅度较小.在沿程高度上活性炭曝气生物滤池和混合填料曝气生物滤池的COD和氨氮在1 200 mm内降幅较大,之后降幅趋缓.3个曝气生物滤池的生物量在沿程900 mm时达到最大,分别为30.69、28.87和15.94 nmol·g-1.  相似文献   

13.
A~2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷   总被引:8,自引:0,他引:8  
以低C/N比实际生活污水为研究对象,重点考查了A2/O-曝气生物滤池生化系统的脱氮除磷特性.同时,考虑到A2/O工艺的主要功能是除磷及反硝化,而曝气生物滤池则以硝化为目的.因此,通过缩短A2/O的泥龄,可将硝化过程从A2/O中分离出去,让曝气生物滤池完成硝化,实现硝化菌和聚磷菌的分离,并解决了硝化菌和聚磷菌泥龄之间的矛盾.试验结果表明,该生化系统可实现有机物、氮和磷的同步去除.在平均C/N比为4.2,内回流比R为250%的条件下,平均进水COD、TN、TP分别为239.9、57.3和5.1mg·L-1,平均最终出水COD、TN、TP分别为34.1、13.3和0.1mg·L-1,去除率分别为85.8%、76.9%和98.3%.曝气生物滤池对氨氮几乎保持了100%的去除率.序批试验表明,反硝化聚磷菌占聚磷菌的比例为40.5%.  相似文献   

14.
采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素废水二级生化处理出水进行深度处理,考察了组合工艺对废水污染物的去除效果,通过三维荧光光谱结合平行因子法(EEMs-PARAFAC)分析了废水中有机物的荧光变化特征,并利用Illumina MiSeq高通量测序技术对BAF中微生物菌群结构的变化进行研究.结果表明,在最佳运行条件下,抗生素废水COD平均值由232 mg·L-1降至46 mg·L-1,NH4+-N平均浓度由12 mg·L-1降至4.1 mg·L-1,出水水质可稳定达到《发酵类制药工业水污染物排放标准》(GB21903-2008).EEMs-PARAFAC从废水中解析出3类荧光组分,主要可归为腐殖酸(胡敏酸)、富里酸及其混合物,经组合工艺处理后荧光强度大幅下降甚至消失.Illumina MiSeq测序显示,污泥经抗生素废水驯化后微生物丰富度和均匀度明显降低,Proteobacteria(变形杆菌门)、Chloroflexi(绿屈挠菌门)和Firmicutes(厚壁菌门)是优势菌门,其中,Thiothrix(发硫菌属)、ThermomonasPseudoxanthomonas(假黄单胞菌属)和JG30_KF_CM45是降解抗生素类污染物的主要菌属.  相似文献   

15.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和溶解氧(DO)浓度,实现了反硝化除磷耦合同步硝化内源反硝化(DPR-SNED)系统的启动,并对启动过程中系统的脱氮除磷特性进行了研究.结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3 h,好氧段DO浓度为0. 5~1. 0 mg·L-1,60 d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45 d可实现DPR-SNED系统的启动,缺氧末PO_4~(3-)-P浓度1. 1 mg·L-1,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右. DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源.此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮.  相似文献   

16.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

17.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2018,39(11):5074-5080
在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13. 0 mg·L~(-1),超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L~(-1)启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5. 5~7. 3 mg·L~(-1).第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6. 2~7. 2 mg·L~(-1).与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L~(-1),使出水氨氮和总氮浓度达到北京市地标一级A标准.  相似文献   

18.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号