首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选取3座AAO工艺市政污水处理厂为研究对象,应用qPCR和15N稳定同位素示踪技术,考察活性污泥样品中厌氧氨氧化菌丰度、速率、功能及与其他氮循环微生物的季节性交互作用.结果表明,所有样品中均能检测到厌氧氨氧化菌,其丰度为106~107copies/g VSS,速率为0.11~0.90μmol N/(g VSS·h).较自养硝化而言,异养反硝化过程不仅具有为厌氧氨氧化菌提供更多NO2-的潜势,还是NO2-的强力竞争者;而自养硝化过程中的AOB较AOA能提供更多NO2-.厌氧氨氧化菌对氨氧化的贡献率为2.55%~7.89%,对系统脱氮的贡献率为2.07%~6.59%,且夏季表现均高于冬季.CCA结果进一步证明环境温度是活性污泥中厌氧氨氧化表现的关键环境要素之一,而反硝化和硝化速率则是关键微生物因素.说明虽然厌氧氨氧化菌在污水生物处理系统中的丰度并不高,但依然起着不容忽视的脱氮效能,该研究结果补充了污水生物处理脱氮过程和氮素迁移转化过程中的氮平衡计算,为厌氧氨氧化在低氨氮城市污水处理领域的生产性应用提供理论支持.  相似文献   

2.
通过连续流实验和批式实验研究了有机物和NO2--N对厌氧氨氧化菌和反硝化菌耦合脱氮特性的影响.在连续流实验中,保证底物NO2--N充足,研究了葡萄糖有机物对厌氧氨氧化颗粒污泥反应器脱氮性能的影响.当进水葡萄糖有机物的COD浓度为100mg/L时,颗粒污泥具有良好的厌氧氨氧化耦合反硝化脱氮活性,当COD浓度为200mg/L时,颗粒污泥的厌氧氨氧化耦合反硝化脱氮活性较差.当进水COD浓度分别为100,200mg/L时,反应器中颗粒污泥的厌氧氨氧化NH4+-N去除活性分别为0.096,0.071kg NH4+-N/(kgVSS-d),厌氧氨氧化NO2--N去除活性分别为0.153,0.092kg NO2--N/(kgVSS-d),反硝化NO2--N去除活性分别为0.111,0.212kg NO2--N/(kgVSS-d).在批式实验中,研究了碳源种类和COD/NO2--N比对厌氧氨氧化耦合反硝化颗粒污泥脱氮性能的影响.控制COD/NO2--N比为1~4,以葡萄糖为碳源时,厌氧氨氧化菌在亚硝态的竞争过程中占据优势;以乙酸钠为碳源时,控制COD/NO2--N比为1~4,厌氧氨氧化菌在亚硝态的竞争过程中处于劣势.  相似文献   

3.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

4.
生活垃圾焚烧厂渗沥液是一种含高氨氮高有机物浓度的难处理废水,目前渗沥液生物脱氮多采用多级硝化反硝化处理工艺,存在能耗大、效率低等不足。以厌氧氨氧化技术为核心,构建连续流厌氧消化-短程硝化-厌氧氨氧化三段式工艺,分析垃圾焚烧厂渗沥液的生物脱氮效果、有机物迁移转化规律、功能微生物活性及组成变化。结果表明:在进水ρ(NH4+-N)为900~1800 mg/L,ρ(COD)为3000~20000 mg/L时,系统处理效果良好,稳定运行期间总无机氮和COD去除率分别为85%和77%。其中厌氧消化段可去除约45%的COD,短程硝化段NO2--N积累率保持在97%以上,厌氧氨氧化段稳定运行期间总无机氮去除率约为85%,系统内也存在一定程度反硝化反应。接入渗沥液后,自养脱氮体系中功能微生物氨氧化菌(AOB)和厌氧氨氧化菌(Anammox)的活性均有不同程度的下降,采用宏基因组学结合16S rDNA高通量测序技术对比分析微生物的群落和功能组成变化,发现渗沥液中高浓度的有机物使短程硝化段和厌氧氨氧化段内异养反硝化菌相对丰度上升,Anammox受到难降解有机物抑制,其中Candidatus_Kuenenia菌属适应性较强,在驯化后仍然可以维持厌氧氨氧化系统较高的脱氮效果。  相似文献   

5.
通过一种新型的短程反硝化-厌氧氨氧化(Partial Denitrification/Anammox,PD/A)固定生物膜工艺,同步处理模拟的低C/N城市污水厂生活原水和二级出水,研究了不同进水C/N(1.3,1.5,1.6,1.8)和不同pH值(7.5,8.0,8.5,9.0)下该工艺的脱氮效果.结果表明,逐步提高进水C/N强化了系统的完全反硝化作用,平均NO3--N去除率从52.3%增长至85.7%;较高的进水pH值促进了短程反硝化过程中NO2--N的积累,继而强化了厌氧氨氧化的自养脱氮作用,平均NH4+-N去除率从82.2%增长至89.7%.在C/N=1.6、pH=9.0的条件下,该工艺达到了88.3%的TN去除率,出水TN稳定低于2mg/L.此外,分析了PD/A固定生物膜工艺在传统AAO工艺升级改造中的潜力.  相似文献   

6.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

7.
生物脱氮组合工艺的研究及应用   总被引:2,自引:1,他引:1  
为处理高浓度含氮废水,提出生物脱氮组合工艺,首先介绍3种生物脱氮技术原理,同时对其进行比较分析,找出现有技术在实际应用中存在的不足,从而归纳出生物脱氮组合工艺,即"短程硝化+厌氧氨氧化+反硝化"。该组合工艺可去除废水中各种形式的氮,且去除1 mol氨态氮消耗0.75 mol氧气。实际应用中总氮去除率最高可达87.5%,氨氮去除率最高可达91.8%。  相似文献   

8.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L~(-1),实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

9.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

10.
废水生物脱氮新工艺   总被引:1,自引:0,他引:1  
介绍了短程硝化-反硝化、厌氧氨氧化和分段进水生物脱氮3种污水生物脱氮新工艺的原理和特点,并对每一种工艺的影响因子进行了分析,为废水生物脱氮工艺的研究提供了新的方向.  相似文献   

11.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

12.
赵晴  刘梦莹  吕慧  梁俊宇  刁兴兴  张鑫  孟了 《环境科学》2019,40(9):4195-4201
本研究从某垃圾填埋场计划将现有的垃圾渗滤液短程硝化反硝化脱氮工艺改造为短程硝化反硝化耦合厌氧氨氧化工艺的实际需求入手,以短程硝化反硝化污泥作为接种污泥,在上流式厌氧污泥床反应器(UASB)中完成厌氧氨氧化启动.探究反应器运行中的脱氮效能、氮容积负荷和氮去除负荷情况,并利用16S rRNA基因序列分析技术对长期运行条件下系统中微生物群落结构演替进行分析.结果表明,反应器经历了149 d后成功启动厌氧氨氧化,稳定运行后的进水总氮容积负荷达到4 000. 00 mg·(L·d)-1,总氮容积平均去除速率达到3 885. 76 mg·(L·d)-1,系统氨氮和亚硝酸盐氮的平均去除率均超过了95%.运行第250 d时,系统的生物多样性减少,门水平上厌氧氨氧化主要菌群Planctomycetes的丰度达到了54. 94%;属水平上Candidatus Kuenenia为主要菌属,其相对丰度达到了49. 66%.结果证明,在短程硝化反硝化基础上耦合厌氧氨氧化实现垃圾渗滤液深度处理的升级改造工艺具有可行性.  相似文献   

13.
与传统硝化-反硝化工艺对养猪废水脱氮处理相比,厌氧氨氧化(Anammox)是一种更为绿色节能的污水生物脱氮工艺,但缺乏成熟的大规模养猪废水处理的工程应用案例.因此,本研究开展厌氧氨氧化技术应用于猪场废水处理的中试项目,采用一体化集装箱式组合工艺,主要包括前置反硝化池、亚硝化池、亚硝化-厌氧氨氧化池(PN-A池).结果表明,中试设备稳定运行阶段,处理规模为2 m3·d-1,总氮去除率为93.93%±0.44%,有机物(以COD计)去除率为84.43%±0.84%,表现出良好的脱氮除碳能力.高通量测序分析结果表明,Nitrosomonas为系统中主要的好氧氨氧化菌,在亚硝化池和PN-A池都有显著富集,其相对丰度最高可达7.50%;亚硝化池亚硝氮积累率为74.28%,系统能够实现稳定亚硝化.反硝化池中主要的反硝化功能细菌为Thauera和Halomonas.Candidatus Kuenenia是系统中唯一检测到的AnAOB,只存在于PN-A池中,稳定运行期间其在填料上的相对丰度较悬浮污泥中的相对丰度高0.76~10.95倍.综上所述,厌氧氨氧化一...  相似文献   

14.
孙扬平 《环境科学与管理》2007,32(6):114-115,119
传统生物脱氮工艺对废水脱氮起到了重要作用,但仍存在许多问题.如氨氮完全硝化需消耗大量的氧,增加了动力消耗.对低C/N比低的废水,还需外加碳源,工艺流程长,占地面积大,基建投资高等,本文阐述了同步硝化反硝化、短程硝化反硝化及厌氧氨氧化等生物脱氮新技术的特点及存在的问题,并提出了今后的研究方向.  相似文献   

15.
针对煤气化废水现有处理工艺存在的污染物去除效果差、运行成本高等问题,文章提出了短程反硝化耦合厌氧氨氧化的处理工艺。将部分原水和经硝化阶段处理的原水按一定比例混合后进入短程反硝化阶段,充分利用原水中的COD作为短程反硝化碳源获得富含氨氮和亚硝氮的出水,保证了后续厌氧氨氧化自养脱氮过程能够正常进行。通过控制反应器温度在15~25℃、pH在8.0~8.5和少量有机碳源投加的措施实现了对短程反硝化过程的稳定控制,亚硝氮积累率高达85.7%。该实验最终出水总氮去除率可达87.0%,出水COD低于28.0 mg/L,氨氮低于4.8 mg/L,证明了短程反硝化耦合厌氧氨氧化工艺的可行性和高效性。同时,该工艺曝气能耗低、有机碳源和碱度消耗少,为厌氧氨氧化技术的应用提供了新的思路。  相似文献   

16.
低碳氮比废水生物脱氮新技术   总被引:11,自引:0,他引:11  
传统的除氨氮工艺需要消耗较多的氧气,且对于低碳氮(C/N)比的废水,需外加有机碳源才能进行反硝化。详细阐述了同步硝化反硝化、短程硝化反硝化、厌氧氨氧化和全程自养脱氮等生物脱氮新技术的特点,应用前景以及存在的问题。提出了今后的研究方向。  相似文献   

17.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

18.
《环境科学与技术》2021,44(4):54-63
短程反硝化-厌氧氨氧化工艺因无须曝气,节省碳源,理论上可实现100%氮去除,成为近年来最具应用前景的新型污水生物脱氮技术。短程反硝化(NO_3~--N→NO_2~--N)又可分为胞外碳源(即外源短程反硝化,或短程反硝化)和胞内碳源(即内源短程反硝化)2种电子供体驱动类型,但目前鲜有研究对2种新型短程反硝化及其耦合厌氧氨氧化的专题报道。文章首先对比了短程反硝化和内源短程反硝化工艺原理;其次从反应时间、COD/NO_3~--N比、碳源类型、温度和溶解氧等5个方面总结了2种工艺的影响因素;随后对国内外基于短程反硝化/内源短程反硝化耦合厌氧氨氧化的研究进展进行综述;最后结合当前的研究现状提出目前急需解决的问题并展望了短程反硝化/内源短程反硝化耦合厌氧氨氧化技术的发展方向。  相似文献   

19.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:1,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

20.
亚硝酸型反硝化除磷工艺特性及其应用   总被引:1,自引:0,他引:1  
以亚硝酸盐作为电子受体进行反硝化除磷污泥的驯化,并探究了工艺运行条件、性能及实际应用情况.研究表明:厌氧-缺氧-好氧驯化方式可快速富集以亚硝酸盐为电子受体的反硝化聚磷菌,通过逐步提高底物浓度可以驯化富集耐受高NO2--N浓度的DNPAOs.实际废水运行实验表明,反硝化除磷法处理猪场废水UASB-SFSBR尾水是可行的,当缺氧进水NO3--N、NO2--N和PO43--P浓度分别为5,70,30mg/L时,出水NO3--N和NO2--N浓度基本为0,PO43--P浓度在1.0mg/L以下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号