首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了阐明加拿大一枝黄花成功入侵的机制,利用简单序列重复区间标记(ISSR)方法对加拿大一枝黄花和本地一枝黄花的遗传多样性进行比较研究。从100条引物中筛选出12条引物用于PCR扩增,利用POPGEN32软件对2种一枝黄花进行遗传多样性分析。结果表明,加拿大一枝黄花在物种水平上的多态位点百分率为95.19%,Nei’s基因多样性指数为0.308 5,Shannon’s信息指数为0.415 8;本地一枝黄花在物种水平上的多态位点百分率(89.80%)、Nei’s基因多样性指数(0.249 1)和Shannon’s信息指数(0.383 4)都比加拿大一枝黄花小。加拿大一枝黄花和本地一枝黄花居群间遗传分化系数分别为0.118 2和0.131 3,居群内变异分别为0.881 8和0.868 7,表明2个物种居群间的遗传分化不明显,遗传一致度高,且主要的遗传变异存在于居群内。入侵植物加拿大一枝黄花具有较高遗传多样性,且高于本地一枝黄花,这可能是加拿大一枝黄花成功入侵的原因之一。  相似文献   

2.
Abstract:  The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.  相似文献   

3.
Assessing the Effects of Climate Change on Aquatic Invasive Species   总被引:4,自引:0,他引:4  
Abstract:  Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.  相似文献   

4.
内蒙古高原草原区湿地具有不同于典型湿地的特征,同时还兼具草原的一些特征,在保持生物多样性和珍惜物种资源方面具有不可替代的重要作用.通过样方调查,以重要值为数量特征,采用指示种分析法和多样性指数测定,对内蒙古高原典型内陆河流——锡林河中游河漫滩湿地植被群落特征及物种多样性进行了系统分析和研究.结果表明:(1)锡林河中游河漫滩湿地植被依微地形由高河漫滩向低河漫滩可分为芦苇+羊草,黄花苜蓿+无茫雀麦,灰脉苔草+早熟禾,水甜茅群落,小糠草+蒙古扁穗草等5个群落,以禾本科、菊科、豆科三大草本为主,建群种有别于典型湿地和典型草原群落.(2)植物水分生态类型以湿生、中生为主且无水生类型,具有典型湿地和草原的双重特征;(3)湿地植物群落物种多样性、均匀性和丰富度表现出相似的变化趋势,多样性和丰富度较草甸草原低但高于典型草原;(4)锡林河河漫滩湿地植物群落是典型河流湿地和典型草原之间的过渡类型.表6,参28.  相似文献   

5.
Abstract:  The invasion of non-native earthworms ( Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples.  相似文献   

6.
Abstract:  Important questions in conservation biology and ecology include whether species diversities of different groups of organisms are correlated and, in particular, whether plant diversity influences animal diversity. I used correlation and partial regression analyses to examine the relationships between species richness of vascular plants and four major groups of terrestrial vertebrates (mammals, amphibians, reptiles, and birds) in 28 provinces in China. Species richness data were obtained from the literature. Environmental variables included normalized difference vegetation index, mean January temperature, mean annual temperature, annual precipitation, May through August precipitation, actual evapotranspiration, potential evapotranspiration, and elevation range. Species richness was strongly and positively correlated among the five groups of organisms. Plant richness was correlated with animal richness more strongly than the richness of different animal groups correlated with each other except for reptile richness, which had a slightly higher correlation with amphibian richness than with plant richness. Plant richness uniquely explained 41 times more variance in the species richness of the four vertebrate groups combined than environmental variables uniquely did, suggesting that plant richness influences terrestrial vertebrate richness at the regional scale examined. Because of strong correlations between the diversity of vascular plants and vertebrates, the diversity of vascular plants may be used as a surrogate for the diversity of terrestrial animals in China. My results have implications for selection of areas to be protected at both regional and local scales.  相似文献   

7.
Five Potential Consequences of Climate Change for Invasive Species   总被引:3,自引:0,他引:3  
Abstract:  Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.  相似文献   

8.
Abstract:  Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.  相似文献   

9.
Abstract:  Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.  相似文献   

10.
Abstract:  We studied 28 alien tree species currently planted for forestry purposes in the Czech Republic to determine the probability of their escape from cultivation and naturalization. Indicators of propagule pressure (number of administrative units in which a species is planted and total planting area) and time of introduction into cultivation were used as explanatory variables in multiple regression models. Fourteen species escaped from cultivation, and 39% of the variance was explained by the number of planting units and the time of introduction, the latter being more important. Species introduced early had a higher probability of escape than those introduced later, with more than 95% probability of escape for those introduced before 1801 and <5% for those introduced after 1892. Probability of naturalization was more difficult to predict, and eight species were misclassified. A model omitting two species with the largest influence on the model yielded similar predictors of naturalization as did the probability of escape. Both phases of invasion therefore appear to be driven by planting and introduction history in a similar way. Our results demonstrate the importance of forestry for recruitment of invasive trees. Six alien forestry trees, classified as invasive in the Czech Republic, are currently reported in nature reserves. In addition, forestry authorities want to increase the diversity of alien species and planting area in the country.  相似文献   

11.
Abstract:  The consequences of climate change will affect aquatic ecosystems, including aquatic invasive species (AIS) that are already affecting these ecosystems. Effects on AIS include range shifts and more frequent overwintering of species. These effects may create new challenges for AIS management. We examined available U.S. state AIS management plans to assess each program's capacity to adapt to climate-change effects. We scored the adaptive capacity of AIS management plans on the basis of whether they addressed potential impacts resulting from climate change; demonstrated a capacity to adapt to changing conditions; provided for monitoring strategies; provided for plan revisions; and described funding for implementation. Most plans did not mention climate change specifically, but some did acknowledge climatic boundaries of species and ecosystem sensitivities to changing conditions. Just under half the plans mentioned changing environmental conditions as a factor, most frequently as part of research activities. Activities associated with monitoring showed the highest capacity to include information on changing conditions, and future revisions to management plans are likely to be the easiest avenue through which to address climate-change effects on AIS management activities. Our results show that programs have the capacity to incorporate information about climate-change effects and that the adaptive-management framework may be an appropriate approach.  相似文献   

12.
旅游干扰下五台山不同植被景观区物种多样性特征   总被引:2,自引:0,他引:2  
利用双向指示种分析方法(Two-way indicator species analysis,TWINSPAN)和6个物种多样性指数,研究了旅游干扰下五台山不同植被景观区物种多样性的特征.结果表明:1)TWINSPAN将所有样地划分为9类植被景观区,从Ⅰ区到Ⅸ区,随着旅游干扰程度的增加,植被景观大致由乔灌草区向灌草区、草本区和居民区方向变化.2)乔木层物种的丰富度和综合多样性随着旅游干扰的减小而趋于增加,但是其均匀度没有表现出明显的规律性.3)灌木层物种的丰富度和综合多样性也随着旅游干扰的减小而趋于增加,至于其均匀度,则呈现出在中度干扰下值最大,干扰很小的地方次之,在重度干扰下则最小.4)草本层物种的丰富度、均匀度和综合多样性指数均在旅游干扰适度的地方达到了最大值,在旅游干扰很小的地方,各种值则次之,在干扰严重的地方为最小.5)从整个植被层物种多样性的角度看,随着旅游干扰程度的减少,物种丰富度指数、均匀度指数和综合多样性指数均呈现趋于增加的趋势.表4参15  相似文献   

13.
Abstract: As zebra mussels (Dreissena polymorpha) continue to spread among inland lakes of the United States and Canada, there is growing interest from professionals, citizens, and other stakeholders to know which lakes are likely to be colonized by zebra mussels. Thus, we developed a classification of lake suitability for zebra mussels on the basis of measured or estimated concentrations of dissolved calcium in lake water and applied the classification to >11,500 lakes in Wisconsin and the Upper Peninsula of Michigan. The majority of lakes (58%) were classified as unsuitable (<10 mg/L Ca) for survival and reproduction of zebra mussels, 27% were identified as suitable (≥21 mg/L Ca), and 15% were classified as borderline suitable (≥10 and <21 mg/L Ca). Of the 77 inland lakes with confirmed zebra mussel records for which data on dissolved calcium were available, our method classified 74 as suitable and 3 as borderline suitable. To communicate this lake‐specific suitability information and to help prioritize regional efforts to monitor and prevent the expansion of zebra mussels and other invasive species, we developed a web‐based interface (available from http://www.aissmartprevention.wisc.edu/ ). Although we are still uncertain of how access to suitability information ultimately affects decision making, we believe this is a useful case study of building communication channels among researchers, practitioners, and the public.  相似文献   

14.
Abstract:  Many riparian zones in the Sonoran Desert have been altered by elimination of the normal flood regime; such changes to the flow regime have contributed to the spread of saltcedar ( Tamarix ramosissma Ledeb.), an exotic, salt-tolerant shrub. It has been proposed that reestablishment of a natural flow regime on these rivers might permit passive restoration of native trees, without the need for aggressive saltcedar clearing programs. We tested this proposition in the Colorado River delta in Mexico, which has received a series of large-volume water releases from U.S. dams over the past 20 years. We mapped the vegetation of the delta riparian corridor through ground and aerial surveys (1999–2002) and satellite imagery (1992–2002) and related vegetation changes to river flood flows and fire events. Although saltcedar is still the dominant plant in the delta, native cottonwood (  Populus fremontii S. Wats.) and willow ( Salix gooddingii C. Ball) trees have regenerated multiple times because of frequent flood releases from U.S. dams since 1981. Tree populations are young and dynamic (ages 5–10 years). The primary cause of tree mortality between floods is fire. Biomass in the floodplain, as measured by the normalized difference vegetation index on satellite images, responds positively even to low-volume (but long-duration) flood events. Our results support the hypothesis that restoration of a pulse flood regime will regenerate native riparian vegetation despite the presence of a dominant invasive species, but fire management will be necessary to allow mature tree stands to develop.  相似文献   

15.
Abstract:  Although the shipping industry has received considerable attention as a dispersal mechanism for aquatic nuisance species, many invasions have been linked to other mechanisms of transfer. The threat posed to coastal ecosystems by these alternative mechanisms, however, remains largely unquantified. We assessed the potential risks of introducing marine and estuarine species associated with seven mechanisms of transfer: seafood companies, aquaculture operations, bait shops, stores that sell marine ornamental species, research and educational organizations, public aquariums, and coastal restoration projects. For each, we compiled a comprehensive database of organizations in coastal Massachusetts. We then designed and administered a survey to a subset of organizations that inquired about (1) their proximity to saltwater and methods of handling live imports; (2) the type and quantity of marine species being imported; and (3) the organization's familiarity with marine invasions. Respondents in five of the seven categories acknowledged importing nonlocal live marine species to the area. Seafood companies handled the majority of individuals but relatively few taxa. This mechanism of transfer also had the most complex trade patterns and the greatest number of operations located near saltwater. In contrast, the other transfer mechanisms each had simpler trade pathways and fewer operations but varied in the quantity and taxonomic diversity of their imports. Significantly, no single mechanism of transfer stood out as presenting a primary risk. Rather, each had characteristics or used handling practices at different points in the importation process that could facilitate introductions. To prevent future marine invasions, better reporting requirements for live species imports are needed, and best-management practices and outreach strategies specific to the transfer mechanism should be developed and implemented.  相似文献   

16.
17.
18.
Benefits of Conservation of Plant Genetic Diversity to Arthropod Diversity   总被引:5,自引:0,他引:5  
Abstract:  We argue that the genetic diversity of a dominant plant is important to the associated dependent community because dependent species such as herbivores are restricted to a subset of genotypes in the host-plant population. For plants that function as habitat, we predicted that greater genetic diversity in the plant population would be associated with greater diversity in the dependent arthropod community. Using naturally hybridizing cottonwoods (  Populus spp.) in western North America as a model system, we tested the general hypothesis that arthropod alpha (within cross-type richness) and beta (among cross-type composition) diversities are correlated with cottonwood cross types from local to regional scales. In common garden experiments and field surveys, leaf-modifying arthropod richness was significantly greater on either the F1 (1.54 times) or backcross (1.46 times) hybrid cross types than on the pure broadleaf cross type (  P. deltoides Marshall or P. fremontii Watson). Composition was significantly different among three cross types of cottonwoods at all scales. Within a river system, cottonwood hybrid zones had 1.49 times greater richness than the broadleaf zone, and community composition was significantly different between each parental zone and the hybrid zone, demonstrating a hierarchical concentration of diversity. Overall, the habitats with the highest cottonwood cross-type diversity also had the highest arthropod diversity. These data show that the genetics of habitat is an important conservation concept and should be a component of conservation theory.  相似文献   

19.
Effects of Cattle Grazing on Diversity in Ephemeral Wetlands   总被引:2,自引:0,他引:2  
Abstract:  Cattle are usually thought of as a threat to biodiversity. In regions threatened by exotic species invasion and lacking native wild grazers, however, cattle may produce the type of disturbance that helps maintain diverse communities. Across 72 vernal pools, I examined the effect of different grazing treatments (ungrazed, continuously grazed, wet-season grazed and dry-season grazed) on vernal-pool plant and aquatic faunal diversity in the Central Valley of California. After 3 years of treatment, ungrazed pools had 88% higher cover of exotic annual grasses and 47% lower relative cover of native species than pools grazed at historical levels (continuously grazed). Species richness of native plants declined by 25% and aquatic invertebrate richness was 28% lower in the ungrazed compared with the continuously grazed treatments. Release from grazing reduced pool inundation period by 50 to 80%, making it difficult for some vernal-pool endemic species to complete their life cycle. My results show that one should not assume livestock and ranching operations are necessarily damaging to native communities. In my central California study site, grazing helped maintain native plant and aquatic diversity in vernal pools.  相似文献   

20.
选取云南、四川省3个不同生境作为样地,研究紫茎泽兰入侵对不同生态系统土壤中碱解氮、速效磷、速效钾含量的影响.结果表明,紫茎泽兰入侵造成样地a土壤碱解氮、速效磷、速效钾含量分别显著下降33.9%、44.2%和32.2%;样地b仅土壤速效磷显著下降31.0%;样地c土壤各营养元素未见显著变化.在不同时间,样地a处理组各营养元素含量基本低于对照组,以2005年7月至10月的差异最显著.这说明紫茎泽兰入侵对土壤养分的影响因生境不同而异,且与紫茎泽兰的生长节律有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号