首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The exchange of NO, NO2 and O3 at the soil surface wasmeasured with automatic dynamic chambers in a spruce forest and in abeech forest during periods of several months.NO was emitted from the soil at a rate of0–8 ng N m-2 s-1(spruce) and 0–15 ng Nm-2 s-1(beech), but there was no simple relationship between the flux andeither soil temperature or soil moisture. NO2 and O3 weredeposited at the soil surface. Deposition velocities forNO2were on average 0.3 mm s-1 (spruce) and 0.1 mms-1(beech), and the deposition velocities of O3 were on average 1.6 mm s-1 (spruce) and 1.4 mm s-1 (beech). The depositionvelocity of O3 is fairly constant whereas the deposition velocityof NO2 varies greatly, but the reasons remain to be investigated.  相似文献   

2.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   

3.
Estimates of soil N2O and NOemissions at regional and country scales arehighly uncertain, because the most widely usedmethodologies are based on few data, they do notinclude all sources and do not account forspatial and seasonal variability. To improveunderstanding of the spatial distribution of soilNO and N2O emissions we have developedsimple multi-linear regression models based onpublished field studies from temperate climates.The models were applied to create spatialinventories at the 5 km2 scale of soil NOand N2O emissions for Great Britain. The N2O regression model described soilN2O emissions as a function of soil N input,soil water content, soil temperature and land useand provided an annual N2O emission of 128 kt N2O-N yr-1. Emission rates largerthan 12 kg N2O-N ha-1 yr-1 werecalculated for the high rainfall grassland areasin the west of Great Britain.Soil NO emissions were calculated using tworegression models, which described NO emissionsas a function of soil N input with and without afunction for the water filled pore space. Thetotal annual emissions from both methods, 66 and7 kt NO-N yr-1, respectively, span the rangeof previous estimates for Great Britain.  相似文献   

4.
To study the effects of elevated inputs of acidity and nitrogen (N), 1000 mmol m-2 a-1 of ammonium sulphate (NH4NO3) equivalent to an input of potential acidity of 2000 mmol m-2 a-1 was applied annually for 11 yr between 1983 and 1993 in a beech forest at Solling, Germany. Most of the applied NH4 + was nitrified in the litter layer and in the upper mineral soil. N in soil leachate quickly responded to the elevated input, but most of the applied N was stored in the soil or left the ecosystem via pathways other than soil output. Leaching of N from the soil increased until the last year of N addition. After the last N application, N fluxes decreased rapidly to low values. The buffering of acidity produced by the nitrification of the applied NH4 + was caused mainly by three different processes: (i) sulphur (S) retention, (ii) release of aluminium, (iii) release of base cations. Retention of S took place mostly in the subsoil. 72% of the S input was recovered in output after 14 years of the experiment. Due to the increased fluxes of mobile anions with soil solution, outputs of cations increased drastically.  相似文献   

5.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO 3 and NH 4 + aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH 4 + and NO 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH 4 + and NO 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH 4 + , but the relationship between NH 4 + and N deposition (ln NH 4 + = 0.62 ln Ndeposition + 0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

6.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

7.
Beier  C.  Rasmussen  L.  Pilegaard  K.  Ambus  P.  Mikkelsen  T.  Jensen  N. O.  Kjøller  A.  Priemé  A.  Ladekarl  U. L. 《Water, Air, & Soil Pollution: Focus》2001,1(1-2):187-195
The fluxes of the major nitrogen compounds havebeen investigated in many ecosystem studies over the world.However, only in few studies has attention been drawn to theimportance of the fluxes of minor gaseous nitrogen compoundsto complete the nitrogen cycle. In Denmark a detailed study onthe nitrogen cycle in an old beech forest has been implementedin 1997 at Gyrstinge near Sorø, Zealand. The study includesthe fluxes of the gases NO, N2O and water mediatedtransport of NO3 - and NH4 +. Measurementsof the fluxes of the gaseous compounds are performed withmicro-meteorological methods (eddy-correlation and gradient)and with chambers. Water mediated fluxes encompass rain,throughfall, stem-flow and leaching from the root zone. Thehydrological model is verified by TDR measurements. The findings show that the total water mediated N input tothe forest floor with throughfall and stemflow was 25.6 kg Nha-1 yr -1, and open field wet deposition withprecipitation was 19.0 kg N ha-1 yr -1. The internalcycling of N in the ecosystem measured as turnover oflitterfall and plant uptake was 100 kg N ha-1 yr -1and 14 kg N ha-1 yr -1, respectively. The fluxes ofthe gaseous N compounds NO and N2O were of minorimportance for the total N turnover in the forest, NOxemission being <1 kg N ha-1 yr -1 and N2Oemission from the soil being 0.5 kg N ha-1 yr -1 withno significant difference between wet and dry soils.Concentrations of NO3 - and NH4 + in thesoil solution beneath the rooting zone are very small andconsequently the N leaching is almost negligible. It isconcluded that the nitrogen mass balance of this old beechforest ecosystem mainly is controlled by the input by dry andwet deposition and a large internal N cycle with a fast litterturnover. The nitrogen input tothe forest ecosystem which currently exceeds the critical loadby 5 kg N ha-1 yr -1is mainly accumulated in the soil and no significant nitrateleaching is occurring.  相似文献   

8.
The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modeling and accurate prediction of pollutant emissions. In this paper, mathematical modeling methods for both solid and gaseous phases were employed to simulate the operation of a 450 t/d MSW-burning incinerator to obtain detailed information on the flow and combustion characteristics in the furnace and to predict the amount of pollutant emissions. The predicted data were compared to on-site measurements of gas temperature, gas composition and SNCR de-NOX system. The major operating conditions considered in this paper were grate speed and oxygen concentration. A suitable grate speed ensures complete waste combustion. The predictions are as follows: volatile release increases with increasing grate speed, and the maximal value is within the range of 700–800 kg/m2 h; slow grate speeds result in incomplete combustion of fixed carbon; the gas temperature at slow grate speeds is higher due to adequate oxygenation for fixed carbon combustion, and the deviation reaches 200 K; NOX emission decreases, but CO emission and O2 concentrations increase, and the deviation is 63%, 34% and 35%, respectively. Oxygen-enriched atmospheres promote the destruction of most pollutants due to the high oxygen partial pressure and temperature. The furnace temperature, NO production and CO emission increase as the oxygen concentration increases, and the deviation of furnace exit temperature, NO and CO concentration is 38.26%, 58.43% and 86.67%, respectively. Finally, oxygen concentration is limited to below 35% to prevent excessive CO and NOX emission without compromising plant performance. The current work greatly helps to understand the operating characteristics of large-scale MSW-burning plants.  相似文献   

9.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO 3 ), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment nitrate leaching zones is proposed, whereby most stream NO 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO 3 concentrations.  相似文献   

10.
Rates of methane emission from a Swedish landfill, measured by chamber technique and permanent frames, ranged between 0.034 and 20 mmol CH4m−2. h−1on average. The emissions followed a seasonal pattern, with the highest fluxes occurring between September and May. Methane concentrations in soil also followed a seasonal pattern, with a marked decrease during summers. Using the means of methane emission rates from frost-free periods, a stepwise regression model was made, that could explain 95% of the variation. Soil temperature turned out to be the dominating factor, explaining 85% when transformed to a second-degree function. Methane emissions were negatively correlated with soil temperature, which strongly suggests that biological methane oxidation is an important regulating factor. The activity of methane-oxidizing microorganisms was greatest around 0.5–0.6 m depth in the soil profile, and moisture at this level enhanced emissions. The tendency for methane emissions to be higher at night was probably due to the inhibitory influence of low soil temperatures on methane-oxidizing microorganisms.  相似文献   

11.
The parameterized subgrid-scale surface flux (PASS) modelprovides a simplified means of using remote sensing data from satellites and limited surface meteorological information to estimate the influence of soil moisture on bulk canopy stomatalresistances to the uptake of gases over extended areas.PASS-generated estimates of bulk canopy stomatal resistance were usedin a dry deposition module to compute gas deposition velocitieswith a horizontal resolution of 200 m for approximately 5000 km2 of agricultural crops and rangeland. Results were compared with measurements of O3 flux and concentrations made during April and May 1997 at two surface stations and from an aircraft. The trend in simulated O3 deposition velocityduring soil moisture drydown over a period of a few days matchedthe trend observed at the two surface stations. For areas underthe aircraft flight paths, the variability in simulated O3 deposition velocity was substantially smaller than the observedvariability, while the averages over tens of kilometers were usually in agreement within 0.1 cm s-1. Model results indicated that soil moisture can have a major role in depositionof O3 and other substances strongly affected by canopy stomatal resistance.  相似文献   

12.
A solution containing 35SO4 2- and 3H2O was applied to four plots (5 × 5 m) in a boreal coniferous forest in the Laflamme Lake watershed, Québec, under two contrasting conditions: in summer (plots 1 and 2), and on the snowpack before snowmelt (plots 3 and 4). The transit of both these tracers in the soil solution was then followed through a network of soil lysimeters located at different depths. Four months after the summer application, 3H2O had infiltrated the whole soil profile at plot 1, while 35SO4 2- was only observed in the LFH and Bhf horizons. A 35SO4 2- budget calculated from mid-August to November indicated that 89 and 10.6% of the added 35SO4 2- was retained within the LFH and the Bhf layers, respectively. Fifteen months later, the added 35SO4 2- was distributed in the following proportions within the soil horizons: LFH (73.7%), Bhf (11.8%) and Bf (12.8%), for a total retention rate of 98.3%. The superficial penetration of 3H2O at plot 2 was indicative of a major lateral water movement that prevented the calculation of a 35SO4 2- budget. This situation also was observed at plot 4 during snowmelt. At plot 3, 3H2O moved freely through the soil profile and a significant fraction of the added 35SO4 2- reached the B horizons, where it was presumably adsorbed on aluminum (Al) and ferric (Fe) oxides. The 35SO4 2- budget for plot 3 from March to November indicated that 87% of the added 35SO4 2- was retained within the soil profile, with most being retained in the B horizons (LFH = 33.1%, Bhf = 33.1%, Bf = 20.8%). The contrasting retention patterns of 35SO4 2- within the soil profile following the summer addition and snowmelt likely was caused by the contrastingsoil temperatures and soil solution residence times within the differentsoil layers. The persistence of 35SO4 2- in the soil solution of the entire profile long after the initial tracer infiltration, and the relative temporal stability of specific activity of SO4 2-, point to the establishment of an isotopic equilibrium between the added 35SO4 and the active S-containing reservoirs within a given soil horizon. Overall, the results clearly illustrate the very strong potential for 35SO4 2- retention and recycling in forest soils.  相似文献   

13.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

14.
Year-to-year variation in SO4 2-,NO3 -, Ca2+, K+, and Mg2+concentrations in forest floor and mineral soil percolatefrom a forested, podzolic soil at the Turkey Lakes Watershedon the Precambrian Shield was assessed for monotonic trendsbetween 1986 and 1995. Our objective was to examine howrapidly ion concentrations in soil percolate equilibratedafter stabilization of SO4 2- concentrations inprecipitation. Significant negative trends were detected inmonthly Ca2+, and Mg2+ concentrations in forestfloor and SO4 2-, Ca2+, and Mg2+ inmineral soil percolate during the 10-year-period. Thedecline in Ca2+ and Mg2+ was greater than annualdecreases in SO4 2- and NO3 - in forestfloor percolate and proportional to the reduction inSO4 2- in mineral soil percolate. Response ofmineral soil percolate to a 15 molc L-1SO4 2- decrease in wet-only precipitation between1985 and 1986 was a gradual decline in SO4 2-concentration through 1995. The five-year meanSO4 2- concentration in bulk precipitation, forestfloor percolate, and mineral soil percolate decreased 8, 9and 18 molc L-1 from 1986–90 to 1991–95.Microbial (mineralization of organic S) and sorption(release from and/or retention in the pool of insolubleSO4 2-) processes in the soil were logicalexplanations for the observed changes in SO4 2- inmineral soil percolate.  相似文献   

15.
Nitrous oxide (N2O) emissions were measured weekly to fortnightly between April 2001 and March 2002 from two riparian ecosystems drainingdifferent agricultural fields. The fields differed in the nature of the crop grown and the amount of fertiliser applied. Soil water content and soil temperature were very important controls of N2O emission rates, with a ‘threshold’ response at 24% moisture content (by volume) and 8 °C, below which N2O emission was very low.N2O fluxes were higher at the site that had receivedthe most fertiliser N, but NO3 - was not a limiting factor at either site. There was also a ‘threshold’ effect of rainfall, in which major rainfall events (≥10 mm) triggered a pulse of high N2O emission if none of the other environmental factors were limiting. These results suggest the existence of multiple controls on N2O emissions operating at a range of spatial and temporal scales and that non-linear relationships, perhaps with a hierarchical structure, are needed to model these emissions from riparian ecosystems.  相似文献   

16.
A joint multidisciplinary investigation was undertaken to studythe effects of lime and wood ash applications on two Norway spruce forest Spodosolic soils. The two sites, typical for southern Sweden, were treated in 1994 with either 3.25 t ha-1 dolomite or 4.28 t ha-1 wood ash (Horröd site) or in 1984 with either 3.45 or 8.75 t ha-1 dolomite (Hasslöv site). Both sites show signs of acidification by atmospheric anthropogenic deposition and possessed low soil pH(4.3) and high concentrations of inorganic Al (35 M) in theupper illuvial soil solution. The prevailing soil conditions indicated perturbed soil processes. Following treatment with lime or wood ash, the soil conditions were dramatically altered. Cation exchange capacity (CEC) and base saturation (BS) was considerable increased after addition. Four years after application most of the added Ca and Mg was still present in the mor layer. Fifteen years after application,Mg in particular, became integrated deeper in the soil profile with a greater proportion lost by leaching incomparison to Ca. The concentrations of these ions were greatestin the mor layer soil solutions and Mg had higher mobility givinghigher concentrations also deeper in the profile. Four years after treatment, the application of wood ash and limeresulted in lower pH values and higher inorganic Al in mineral subsoil solutions compared to the untreated soil. We hypothesize that this was probably due to an increased flow of hydrogen ionsfrom the upper soil as a result of displacement by Ca and Mg ionsin the enlarged exchangeable pool. In contrast, fifteen years after lime and wood ash application, the mineral subsoil horizonspossessed a higher pH and lower soil solution Al content than theuntreated plots.Liming promoted soil microbial activity increasing soil respiration 10 to 36%. This is in the same range as net carbon exchange for forests in northern Sweden and could potentially have a climatological impact. The turnover of low molecularweight organic acids (LMWOA) by the soil microbial biomass werecalculated to contribute 6 to 20% to this CO2 evolution.At Horröd, citrate and fumarate were the predominant LMWOAs with lowest concentrations found in the treated areas. In contrast, at the Hasslöv site, propionate and malonate were the most abundant LMWOAs. Higher microbial activity in the upper soil horizons was also theprobable cause of the considerably higher DOC concentrations observed in the soil solution of ash and lime treated areas. Thelime-induced increase in DOC levels at Hasslöv could be attributed to increases in the 3–10 kDa hydrophobic size fraction. Liming also promoted nitrification with high liming doses leading to extreme concentrations of NO3 - (1 mM) in soil solution.At Hasslöv the community of mycorrhizal fungi was dramatically changed by the addition of lime, with only four of 24 species recorded being common to both control and treated areas.Many of the observed effects of lime and ash treatment can be viewed as negative in terms of forest sustainability. After fouryears of treatment, there was a decrease in the pH of the soil solution and higher concentrations of inorganic Al and DOC. Increased organic matter turnover, nitrification and NO3 -leakage were found at Hasslöv. Considering that the weathering rate and the mineral nutrient uptake by trees is mostprobably governed by mycorrhizal hyphae etchingmineral grains in the soil, it is important to maintain this ability of the mycorrhizal fungi. The lime and ash-induced changed mycorrhizal community structure may significantly affect this capability. In light of this investigation and others, as reviewed by Lundström et al. (2003), the implications ofliming on forest health are multifaceted with complex relationships occurring over both space and time.  相似文献   

17.
Temporal variability of soil gas composition in landfill covers   总被引:1,自引:0,他引:1  
In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO2 to CH4 were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil.  相似文献   

18.
The role of snowmelt and subsurface hydrology in determiningthe chemistry of a small headwater stream in the TurkeyLakes Watershed (TLW) was evaluated for the spring meltperiods 1992 to 1996. Spring runoff is the dominanthydrological event at the TLW each year. Processesoccurring within the snowpack during snowmelt wereprincipally responsible for the above-ground changes inchemical fluxes relative to bulk deposition (the effect ofwinter throughfall was minimal). Large changes in chemicalfluxes occurred below ground. Organic matter decomposition,weathering, nitrification, and element cycling are some ofthe more important below-ground processes that operateduring the snow accumulation and ablation season and controlthe composition of the water ultimately appearing in thestream. Maximum stream discharge was accompanied byelevated concentrations of H+, NO3 -, K+,NH4 +, DOC, Al and Mn, but reduced levels ofCa2+, Mg2+, SO4 2- and SiO2. Theconcentration-discharge relationships were consistent withwater movement through and above the forest floor duringpeak discharge, a flowpath facilitated by rapid infiltrationof meltwater and the existence of a relatively impermeablelayer in the mineral soil creating a perched water table. Averaged over the five periods of snow accumulation andablation, it was estimated that pre-melt stream flow, andwater routed through the forest floor and through the uppermineral soil contributed 9, 28 and 63%, respectively, ofthe discharge measured at the outlet of the catchment. Theforest floor contribution would be greater at peak dischargeand at higher elevations. An end-member mixing modelestimated concentrations of SO4 2-, NO3 -,Cl-, Ca2+, Mg2+, Na+ and Al that werecomparable to average values measured in the stream. Othervariables (NH4 +, H+, K+ and DOC) wereover-estimated implying retention mechanisms operatingoutside the model assumptions.  相似文献   

19.
Legislation from developed countries indicates that planting trees on containment landfills is generally forbidden. Concerns centre on the supposition that tree roots can penetrate into and through capping materials, and will thus compromise control of water ingress into waste, and allow the escape of landfill gas. An associated anxiety is that if roots penetrate a clay cap they could cause desiccation and cracking of the clay through excessive moisture abstraction. It is also considered that trees growing on the relatively shallow soil above a landfill cap could be especially prone to uprooting. However, a review of the world literature indicates that maximum depths achieved by tree roots are usually between 1–2 m. Almost 90% of a tree's roots may be found in the upper 0.6 m of soil. Tree roots are highly sensitive to environmental conditions and their downward penetration can be restricted by a number of soil factors including compaction, poor aeration and infertility. A detailed study of these factors indicates that the materials used for capping landfill sites, such as HDPE (high density polyethylene) and compacted clays, can provide an effective barrier to downward root growth. The available information also suggests that tree roots are extremely unlikely to be a primary cause of desiccation cracking in a clay cap owing to their inability to extract more than about one-quarter of the total moisture held in a clay of the density required to ensure a permeability of 1×10−9m s−1. Trees growing on landfill sites with a rootable soil depth of at least 1.5 m should be at no greater risk of windthrow than most forest trees on undisturbed sites. Methods are available to assess the likelihood of windthrow. In any event, windthrow should not cause disruption of a cap, due to the inability of tree roots to penetrate HDPE, or mineral materials compacted to a bulk density of 1.8 g cm−3.  相似文献   

20.
Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt−1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2–20 Mg ha−1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha−1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens’ activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号