首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   

2.
郭森  王蕾  周盼  郭硕  秦伟  安塞  肖捷颖  刘娟  姬亚芹 《环境工程》2018,36(4):122-126
为明确石家庄市夏季道路尘中有机碳和元素碳污染特征及来源,用样方法采集市区4种不同类型共8条铺装道路尘样,处理后经热光碳分析仪测定有机碳(OC)和元素碳(EC)组分。结果表明:总碳(TC)在道路尘PM_(2.5)、PM_(10)中质量分数分别为129 465.2,103 911.4μg/g;PM_(2.5)和PM_(10)中OC和EC相关系数分别为0.94和0.86,可认为OC、EC来源基本一致;OC/EC均>2,表明存在二次有机碳(SOC)的贡献;通过OC/EC最小比值法估算得出SOC占PM_(2.5)和PM_(10)中OC总量的42.5%和32.8%,一次有机碳(POC)贡献较大;夏季道路积尘中的碳主要来自于汽、柴油车尾气排放、大气降尘中燃煤成分和生物质燃烧。  相似文献   

3.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

4.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

5.
自2012年10月13日-2014年9月11日在邯郸市采集PM2.5样品,并对气态污染物以及颗粒污染物(PM10和PM2.5)进行在线监测,将其中100个样品进行8种碳组分分析,初步探讨含碳气溶胶的特征及来源。结果发现:采样期间PM10和PM2.5的平均浓度分别274.4μg/m3和154.7μg/m3,超标率大于80%,其中2013年1月份PM10和PM2.5的最大值更分别达到924.6μg/m3和658.2μg/m3。OC/PM2.5和EC/PM2.5的比例分别为16.7%和7.0%,采暖时间段的OC及EC的污染程度相较于非采暖时间段更为严重。OC和EC的平均增长率分别为2.67和1.33,污染累积和二次转化贡献率分别占49.8%和50.2%;SOC/OC在49.3%~57.7%之间,SOC/PM2.5在7.9%~11.6%之间,二次有机物污染较为严重。因子分析表明,冬季PM2.5碳组分主要来自于燃煤和柴油车尾气排放,生物质燃烧和汽油车尾气,分别解释了PM2.5中碳组分的39.3%、28.4%以及16.3%。  相似文献   

6.
为明确邯郸市PM_(2.5)中碳组分污染浓度、来源和近年来的变化,分别于2015和2017年1、4、7、10月在河北工程大学能环实验楼4层采集PM_(2.5)样品,采用热/光碳分析仪测定了样品中8种碳组分含量,并计算得到有机碳(OC)、元素碳(EC)、Char-EC和Soot-EC含量.结果表明,2017年PM_(2.5)中碳组分浓度较2015年下降约15%,质量分数下降约17%,季节变化均表现为冬高夏低的特点;2017年SOC浓度和SOC/PM_(2.5)、SOC/OC比值均低于2015年,SOC浓度和SOC/PM_(2.5)比值下降约36%,季节分布特征相似(秋冬高、春夏低).两年除夏季外,其余季节OC、EC相关系数均高于0.7,表明存在共同来源;2017年OC、OC1与EC相关性高于2015年,此外,两年中EC1~EC3、Char-EC和Soot-EC与各组分相关系数差异较大;两年中Char-EC与OC、EC的相关性(r=0.5~1.0)明显高于Soot-EC与OC、EC的相关性(r=0.1~0.6),这主要与二者形成机理有关.碳组分之间的关系和主成分分析结果表明,燃煤、生物质燃烧和柴油车尾气的混合源是2015年碳质组分的主要来源,而2017年则来源于燃煤和机动车尾气排放.  相似文献   

7.
太原市PM10及其污染源中碳的同位素组成   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采集太原市PM10及其主要源(煤烟尘、机动车尾气尘、土壤风沙尘)样品,结合离线分步加热氧化法和同位素质谱仪测定了颗粒物中有机碳(OC),元素碳(EC)和总碳(TC)的同位素组成, 并探讨了太原市PM10中碳的来源.结果表明,太原市冬季、春季PM10中OC、EC和TC的碳同位素组成分别是-34.7‰、-23.5‰、-23.9‰和-30.5‰、-23.1‰、-23.9‰; 煤烟尘中OC、EC和TC的碳同位素组成分别是-26.5‰、-23.2‰、-23.6‰,土壤风沙尘分别为-24.6‰、-14.1‰、-17.3‰,汽油车和柴油车尾气尘分别为-27.7‰、-25.5‰、-27.0‰和-25.7‰、-24.3‰、-24.8‰. EC和TC的同位素组成是区分土壤风沙尘较好的标识指标,TC的同位素组成是汽油车尾气尘较好的标识指标;利用二元复合计算公式结果显示土壤风沙尘中OC、EC占TC的百分含量分别为30%、70%;煤烟尘中OC、EC占TC的百分含量分别为11%、89%;汽油车尾气尘中OC、EC占TC的百分含量分别为78%、22%,柴油车尾气尘中OC、EC占TC的百分含量分别为36%、64%;太原市PM10中的TC和EC主要来源于煤烟尘,OC少部分来源于机动车尾气排放,另外还有其他的重要贡献源.  相似文献   

8.
于2016年7月和2017年1月采集盘锦市3个点位的PM2.5样品,研究盘锦市夏冬季节PM2.5中碳组分的特征与来源.结果表明:盘锦市夏季PM2.5、有机碳(OC)和元素碳(EC)日均浓度分别为(46.14±12.70),(8.58±2.82)和(2.89±1.54)μg/m3;冬季分别为(91.01±43.51),(24.50±15.51)和(7.31±5.00)μg/m3.夏季开发区和第二中学2个采样点的OC与EC之间不具有线性相关性;冬季3个采样点OC、EC高度相关.采用最小相关系数法(MRS)估算SOC浓度,得到夏季SOC的浓度为4.65μg/m3,占OC总量的54.19%;冬季SOC浓度为8.42μg/m3,占OC总量的34.36%.通过比值分析和主成分分析得出盘锦市夏季PM2.5中碳组分主要来源为汽油车尾气和燃煤排放;冬季PM2.5中碳组分主要来源为机动车尾气、燃煤排放和生物质燃烧.  相似文献   

9.
为了解我国不同城市PM2.5源的碳成分谱特征和地域差异,采集沈阳市、十堰市和乌鲁木齐市的燃煤源、柴油车尾气源、汽油车尾气源和餐饮源样品,使用热光透射法分析PM2.5中的总碳(TC)、有机碳(OC)和元素碳(EC),以及细分的8种碳组分(OC1,OC2,OC3,OC4,EC1,EC2,EC3和OPCT),构建各类污染源碳成分谱.结果表明:3个城市4类源TC/PM2.5从高到低分别为:餐饮源(65.1%±8.4%)、柴油车尾气源(46.2%±9.5%)、汽油车尾气源(37.7%±3.5%)和燃煤源(17.3%±8.0%);OC/TC在餐饮源中最高(98.0%±0.5%),EC/TC在柴油车尾气源中最高(38.6%±8.5%).3个城市同类源的碳组分含量受污染源细分后的不同类型影响有一定差异,但归一化处理后总体仍表现为燃煤源中OC2(14%~30%)和OC3(13%~23%)含量最高,柴油车尾气源中EC2(22%~56%)含量最高,汽油车尾气源中OC2(24%~41%)、OC1(16%~42%)和OC3(12%~26%)含量最高,餐饮源中OC2(21%~43%)和OC3(23%~49%)含量最高.不同污染源的OC/EC值为燃煤源在0.4~7.6之间,柴油车尾气源在0.2~5.6之间,汽油车尾气源在1.1~38.5之间,餐饮源在6.4~170.2之间.分歧系数结果显示3个城市不同源的碳成分谱具有差异性,同类源的碳成分谱具有相似性.将3个城市同类源碳成分谱合并后利用化学质量平衡灵敏度矩阵得到OC2,OC3,OC4,EC1和OPCT可共同作为燃煤源的标识组分;EC2是柴油车尾气源的标识组分;OC1,OC2和OC3可共同作为汽油车尾气源的标识组分;OC2和OC3可共同作为餐饮源的标识组分.沈阳市、十堰市和乌鲁木齐市相同污染源相似的碳成分谱和一致的标识碳组分可为国内其他城市相关研究提供数据参考.  相似文献   

10.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:13,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   

11.
为了获取机动车源尾气和主要民用燃料源燃烧过程排放的颗粒物中含碳气溶胶的排放特征,使用多功能便携式稀释通道采样器和Model 5L-NDIR型OC/EC分析仪,采集分析了典型机动车源(汽油车、轻柴油车、重柴油车)、民用煤(块煤和型煤)和生物质燃料(麦秆、木板、葡萄树树枝)的PM10和PM2.5样品中的有机碳(OC)和元素碳(EC).结果表明,不同排放源释放的PM10和PM2.5中含碳气溶胶的质量分数存在显著差异.总碳(TC)在不同源PM10和PM2.5中的质量分数范围分别为40.8%~68.5%和30.5%~70.9%,OC/EC范围分别为1.49~31.56和1.90~87.57.不同源产生的含碳气溶胶均以OC为主,OC在PM10和PM2.5中的质量分数范围分别为56.3%~97.0%和65.0%~98.7%.在PM10和PM2.5的含碳气溶胶中OC质量分数按照从高到低...  相似文献   

12.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

13.
从济南市机动车年检线上利用稀释通道方法采集了小型汽油车、中型汽油车、中型柴油车和大型柴油车4类机动车排气载带PM_(2.5),分析测量了样品中水溶性离子、金属元素、有机C(OC)和元素C(EC)的含量,明确了济南市机动车排气的化学组分特征,得到了济南市机动车排气污染现状以及排放特征.计算了4类机动车排气载带颗粒物的OC/EC值,小型汽油车、中型汽油车、中型柴油车和大型柴油车排气载带颗粒物中OC/EC值分别为15.79、4.34、1.93和0.39,其中小型汽油车、中型汽油车的OC/EC值均大于2,表明汽油车的尾气大于柴油车的尾气污染.而小型汽油车OC/EC值高达15.79,说明小型汽油车尾气中存在严重的二次污染.金属元素特征分析表明Ti、Mn、Fe、Al在济南市机动车尾气颗粒物PM_(2.5)中含量较高,尤其是Mn和Ti,因此,这4种金属元素可作为济南市机动车尾气源的标志元素.PMF模型解析表明,机动车排气源对济南市环境空气PM_(2.5)的贡献率为17.5%,由此可以通过控制济南市小、中型汽油机动车数量、改善油品和改善机动车排气系统来降低对PM_(2.5)的贡献率,从而减少市区空气中PM_(2.5)的浓度.  相似文献   

14.
含氧柴油对柴油机排放及细颗粒物碳质组分的影响   总被引:2,自引:1,他引:1  
乙缩醛(1,1-diethoxyethane)与柴油互溶性好, 可替代乙醇作为生物质来源的柴油含氧添加成分. 生物柴油掺混可以提高乙缩醛和柴油混合燃料的闪点及含氧量. 在柴油发动机台架上, 考察柴油和2种含氧柴油(10%乙缩醛+90%柴油和10%乙缩醛+10%生物柴油+80%柴油)在2个固定转速不同负荷的5个工况点的排放特性, 分析了NOx、HC、CO和PM2.5排放情况, 并用DRI的碳分析仪分析了PM2.5中的碳质组分.结果表明, 与普通柴油排放相比, 含氧柴油对NOx排放速率的影响不大, 在某些工况点HC排放速率有较显著的增加. 含氧柴油降低了柴油机PM2.5排放速率, 最大降低幅度29%. 从碳质组成上看, 含氧燃料降低了PM2.5中总碳 (total carbon,TC) 的排放速率, 最大降低幅度24%. 含氧柴油的元素碳(elemental carbon,EC)排放速率普遍低于普通柴油; 有机碳(organic carbon,OC)的排放速率在发动机高转速工况时明显低于普通柴油; PM2.5的OC/EC值在大多数工况下高于普通柴油. 3种燃料排放PM2.5的碳质组成百分比相似, OC和EC主要为OC1和EC1. 含氧柴油降低了柴油机PM2.5的排放速率, 颗粒物中OC的比例有所增加, 但对颗粒物的碳质组分组成没有明显的影响.  相似文献   

15.
为对比城区与相邻县区不同空气质量下的碳组分污染特征,分别在成都市和仁寿县采集霾期及非霾期PM_(2.5)有效样品共计88个,确定其相应质量和各碳组分浓度[有机碳(OC)、元素碳(EC)和二次有机碳(SOC)等],并进行各碳组分之间的相关性及主成分分析.结果表明,不同空气质量下的城区污染物浓度均高于县区.OC和EC密切相关,非霾期的相关性系数较霾期大.与城区相比,霾期县区的SOC/PM_(2.5)较大,说明其受二次有机物污染更为明显;但城区非霾期二次气溶胶占比明显高于霾期,表明霾期的一次排放是城区大气污染的主要原因.燃煤、机动车排放和生物质燃烧均是两个区域PM_(2.5)的主要来源.  相似文献   

16.
为更加准确地估算环境受体PM2.5中SOC(二次有机碳)的质量浓度,于2015年6-8月利用在线监测仪器同步采集小时分辨率的PM2.5及OC(有机碳)和EC(元素碳)样品数据,分析碳气溶胶的变化特征,并尝试运用改进的EC示踪法估算ρ(SOC).结果表明:天津市区夏季ρ(PM2.5)为(70.9±46.0)μg/m3,ρ(OC)和ρ(EC)分别为(7.6±3.1)(2.2±1.5)μg/m3,占ρ(PM2.5)的11.8%±4.6%和3.1%±1.4%,OC/EC(质量浓度之比,下同)的平均值为4.0±2.0.ρ(OC)与ρ(EC)之间的Pearson相关系数(R)仅为0.66,说明OC和EC的来源较为复杂,SOC的产生可能是重要影响因素.ρ(NO2)与OC/EC呈显著负相关(R=-0.47,P < 0.01),并且OC/EC(4.0)相对较低,说明天津市区机动车可能对碳气溶胶具有重要影响.ρ(SO2)与ρ(OC)、ρ(EC)的相关性较低(R均为0.33,P均小于0.01),说明天津市区碳气溶胶可能受燃煤源的影响较低.改进的EC示踪法主要是利用O3和CO、EC作为光化学反应和一次源排放的指标,并结合ρ(OC)、ρ(EC)和OC/EC的变化特征,逐步筛选一次排放源主导的时间段的ρ(OC)和ρ(EC)数据,然后利用最小二乘法拟合获得ρ(OC)和ρ(EC)的线性方程,最后进行ρ(SOC)和ρ(POC)(POC为一次有机碳)的估算.天津市区夏季ρ(SOC)的平均值为(2.5±2.0)μg/m3,分别占ρ(OC)和ρ(PM2.5)的28.8%±15.0%和3.7%±3.6%;ρ(POC)的平均值为(5.2±1.7)μg/m3,分别占ρ(OC)和ρ(PM2.5)的71.2%±15.0%和8.1%±5.2%,说明天津市区夏季有机碳的主要来源是一次排放源.研究显示,相比于EC示踪法,改进的EC示踪法估算的ρ(SOC)明显降低,ρ(POC)明显升高.AT(大气温度)对ρ(SOC)的影响较为显著,而WS(风速)对ρ(POC)的影响较为显著.   相似文献   

17.
为研究山西省太原、阳泉、长治和晋城冬季PM2.5中碳质组分的污染特征和来源,于2017-11-15—12-31同步采集了冬季PM2.5样品,采用热/光分析法分析了样品中有机碳(OC)和元素碳(EC)组分含量,使用最小相关系数法估算了二次有机碳(SOC)浓度,并利用相关分析及正定矩阵因子分析法(PMF)研究了各城市PM2.5中碳质组分的来源。结果表明:采样期间各城市OC、EC的平均浓度分别为(13.5±5.7),(8.0±4.4)μg/m3,均呈阳泉((17.3±4.5),(13.6±3.0)μg/m3)>太原((16.5±7.0),(7.8±4.2)μg/m3)>长治((12.8±4.0),(7.7±2.8)μg/m3)>晋城((8.3±2.9),(2.9±1.3)μg/m3)的空间分布特点。各城市OC、EC与气态污染物SO2、NO2和CO均显著相关,表明燃煤源和机动车尾气对碳质组分的影响较大。OC和SOC与相对湿度均呈显著正相关,各城市SOC在OC的占比排序为太原(48%)>长治(45%)>晋城(36%)>阳泉(34%),与相对湿度一致,说明各城市冬季SOC的形成可能主要来自液相反应。PMF解析结果显示:各城市冬季PM2.5中碳质组分主要来源于燃煤源(24.2%~30.4%)、汽油车尾气(21.0%~30.9%)、柴油车尾气(16.1%~24.3%)和扬尘源(17.2%~20.5%),其中燃煤源对长治冬季PM2.5中碳质组分的贡献(30.4%)高于其他3个城市,汽油车尾气对太原的贡献(30.9%)高于其他城市,而柴油车尾气(24.3%)和扬尘(20.5%)对阳泉的贡献均高于其他城市。  相似文献   

18.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号