首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 73 毫秒
1.
生物炭对农田地表反照率及土壤温度与湿度的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为了探究生物炭输入后农田地表反照率及土壤温度与土壤湿度的响应,通过田间小区试验,分析生物炭影响下农田地表反照率、土壤温度、土壤湿度的变化情况. 试验共设置3个主处理——CK处理(不施用生物炭)、BC5处理〔生物炭施用量为0.5 kg/(m2·a)〕、BC45处理〔生物炭施用量为4.5 kg/(m2·a)〕,同时每个主处理设置2个副处理——种植作物(以+表示)和未种植作物(以-表示). 结果表明:在有作物覆盖条件下,相对于CK+处理,BC45+、BC5+处理的地表反照率在玉米苗期分别下降23.1%、19.1%(P<0.05),在玉米拔节期分别下降20.0%、15.1%(P<0.05),但在玉米抽穗期至成熟期,各处理的地表反照率无明显差异. BC5+、BC45+处理的土壤温度、土壤湿度与CK+处理相比均未见显著改变. 在未种植作物条件下,相对于CK-处理,BC45-、BC5-处理的地表反照率最大降幅分别为26.7%、24.3%(P<0.05),BC5-处理的土壤湿度增幅为1.7%~3.8%,BC45-处理的土壤温度、土壤湿度无显著变化. 可见,随着玉米冠层结构的发展,生物炭输入降低地表反照率的效应在逐渐减弱甚至消失;生物炭输入对土壤温度、土壤湿度的影响程度与作物覆盖条件以及生物炭施用量有关.   相似文献   

2.
曹坤坤  张沙沙  胡学玉  黄洋 《环境科学》2020,41(11):5185-5192
为探究生物质炭对土壤呼吸及微生物群落结构的影响,在不同生物质炭用量及不同温度条件下进行室内土壤培养试验,分析土壤CO2释放规律、不同有机碳组分的变化以及土壤细菌群落结构特征.结果表明:①生物质炭处理对各温度条件下的土壤呼吸均表现为前期激发和后期抑制的效应,且在培养14 d之后,生物质炭处理显著降低了土壤呼吸温度敏感性Q10值.②就土壤有机碳而言,未添加生物质炭的CK处理土壤惰性有机碳含量的下降幅度随温度升高而增大,对温度变化较敏感,但生物质炭的输入显著降低了土壤惰性有机碳的温度敏感性,使各温度条件下土壤惰性有机碳的降幅收窄,且降幅并未随温度的升高而增大.③16S rDNA高通量测序结果显示,至培养末期,CK处理土壤中马赛菌属(Massilia)的相对丰度随温度升高而降低,且生物质炭的输入显著提高了马赛菌属的温度敏感性,使其相对丰度随温度升高降幅增大.与马赛菌属相反,CK处理土壤中嗜盐囊菌属(Haliangium)的相对丰度随温度的升高显著增加,生物质炭的输入降低了其温度敏感性,使温度梯度间相对丰度差异不显著.本研究表明,生物质炭的输入可显著降低土壤呼吸温度敏感性,这与土壤惰性有机碳温度敏感性的降低及马赛菌属和嗜盐囊菌属相对丰度的改变有关.  相似文献   

3.
多年施用生物炭对河南烤烟种植区土壤呼吸的影响   总被引:4,自引:3,他引:4  
为探究生物炭施用对土壤呼吸的影响,采用5 a定位试验(2013~2017年)研究了不施生物炭(CK)、施用1. 5 t·hm-2生物炭(T1)、施用15 t·hm-2生物炭(T2)、施用45 t·hm-2生物炭(T3)这4种处理下土壤呼吸及土壤水热因子的动态变化规律.结果表明:(1)在土壤中连续5a施入中剂量生物炭(T2:15 t·hm-2)显著降低了烤烟生长季土壤呼吸速率,降幅为25. 89%;当施入量增至45 t·hm-2(T3)时土壤呼吸速率显著增加,增幅为21. 48%(P 0. 05).(2)长期中剂量生物炭的添加显著降低了土壤异养呼吸速率和自养呼吸速率,降幅分别为29. 80%和28. 75%;大剂量生物炭(T3:45 t·hm-2)的施入显著增加了土壤异养呼吸速率,增幅为28. 88%.低剂量生物炭(T1:1. 5 t·hm-2)和中剂量生物炭均显著增加土壤呼吸中自养呼吸的比例,大剂量生物炭的施入显著增加了异养呼吸的比例(P 0. 05).(3)低剂量生物炭显著降低了烤烟生长季土壤5 cm温度;大剂量生物炭显著降低了土壤5 cm湿度.土壤呼吸与土壤5 cm温度之间呈显著指数相关,与土壤5 cm湿度之间未表现出显著相关(P 0. 05).综上,连续5a低剂量生物炭的施用对土壤呼吸无影响,适量生物炭的施用具有固碳减排效应,大剂量生物炭施用则会适得其反,建议生物炭施用范围应控制在15 t·hm-2以内.  相似文献   

4.
生物炭对农田土壤-植物系统有机碳储量的影响   总被引:2,自引:0,他引:2  
为探究生物炭对农田土壤有机碳储量以及作物固碳量的作用效应,在长江中下游地区地带性土壤黄棕壤上设置田间小区试验,采用玉米-小麦轮作方式,在不同生物炭用量[0.0 kg/(m~2·a)-(CK)、0.5 kg/(m~2·a)-(BC1)、4.5 kg/(m~2·a)-(BC2)]条件下,对土壤有机碳含量、作物生物量、作物光合固碳量等指标进行了测定分析,并估算了试验条件下农田土壤-植物系统有机碳储量。结果表明:(1)在0~20cm土层,BC2处理两季玉米收获时的土壤有机碳储量(3.72和3.77 kg/m~2)分别比CK处理增加18.93%和19.23%。小麦季BC2的土壤有机碳储量达3.43 kg/m~2,也比CK增加了12.83%。BC1处理比CK虽有增加,但未形成显著差异。土壤有机碳含量是土壤有机碳储量增加的基础。(2)两季玉米收获时其BC1处理的单株固碳量未显著高于对照,BC2处理的玉米单株固碳量(80.06和80.69 g/株)则分别比对照提高6.46%和7.16%。在小麦季,2个生物炭处理的植株单株固碳量均高于对照,尤以BC2处理较为突出,其单株固碳量达到3.06 g/株,比对照显著提高16.17%。作物生物量对植株单株固碳量有显著贡献。(3)就土壤-植物系统有机碳储量而言,BC2处理下,在两季玉米收获时该值分别为4.42和4.50 kg/m~2,显著高于CK处理,增幅达16.75%和17.09%。小麦季BC2处理的土壤-植物系统有机碳储量也达到了3.70 kg/m~2,比CK显著提高13.07%。在三季作物中,土壤有机碳储量占整个土壤-植物系统有机碳储量的80%~93%,土壤是农田生态系统碳增汇的主要来源,减少土壤碳排放可以使整个农田生态系统固定更多的碳。  相似文献   

5.
生物炭对塿土土壤容重和团聚体的影响   总被引:9,自引:10,他引:9  
通过比较生物炭施入土壤2 a和5 a的试验结果,研究随年限的增长生物炭的添加对塿土容重和土壤团聚体含量及稳定性的影响.采用田间定位试验和室内分析,试验设生物炭用量为0 t·hm~(-2)(B0)、20 t·hm~(-2)(B20)、40 t·hm~(-2)(B40)、60t·hm~(-2)(B60)和80 t·hm~(-2)(B80)这5个处理,将果树树干、枝条生物炭(450℃、限氧条件下)施入土壤,与耕层土壤混匀.经过5 a,分3层测定0~30 cm土层(即0~10、10~20和20~30 cm)的土壤容重、团聚体及有机碳含量.结果表明:①生物炭施入土壤5 a与施入2 a的结果相比,其对0~10 cm和10~20 cm土层团聚体影响相对减弱,对20~30 cm土层土壤容重和团聚体的影响显著增强.②随着年限的增长,在0~10 cm土层,生物炭施用量为40 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小;在10~20 cm和20~30 cm土层,生物炭施用量为60~80 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小.③当生物炭施用量为60 t·hm~(-2)时,对土壤有机碳的增加效果表现最优.说明生物炭对土壤团聚体的影响是一个渐进的过程.生物炭施入土壤5 a,其对深层土壤的影响更为显著,20~30 cm土层的土壤容重显著降低, 0. 25 mm团聚体的含量及团聚体稳定性显著增强.从经济效益和改善效果综合考虑,在耕层土壤施入40~60 t·hm~(-2)的生物炭最适.  相似文献   

6.
生物炭作为一种土壤改良剂,已广泛用于农田土壤的改善.为明确生物炭对我国农田土壤固碳效应的影响,基于已公开发表的文献数据,利用Meta分析法研究生物炭施用在不同试验条件下对土壤团聚体、团聚体碳和土壤有机碳的响应.结果表明,与不施生物炭相比,施用生物炭显著增加土壤大团聚体比例(10.8%)和平均重量直径(MWD,13.3%),对土壤微团聚体和粉黏粒组分无显著作用;施用生物炭能够显著增加土壤各粒径团聚体碳和土壤总有机碳含量,土壤有机碳增幅为56.9%.通过亚组分析和Meta回归分析表明,华北地区施用生物炭土壤有机碳增幅最大(39.4%);不同试验类型下施用生物炭均能显著提高土壤有机碳含量;相比不施肥,施肥条件下施用生物炭能显著改善土壤结构,提升土壤肥力;生物炭在施用>2 a条件下,能显著提高大团聚体比例(15.7%)、MWD (21.2%)、大团聚体碳(31.7%)和土壤有机碳含量(40.0%);相比木材、木屑等原料制备的生物炭,农作物秸秆制备的生物炭对土壤的改良效果更佳;在高氮土壤中施用生物炭更有利于提高土壤团聚体稳定性.综上所述,生物炭施用可以改善土壤团聚结构,促进土壤有机碳积累,对农田肥力维持与提升具有重要意义.  相似文献   

7.
生物炭输入对土壤本体有机碳矿化的影响   总被引:3,自引:2,他引:1  
陈威  胡学玉  陆海楠 《环境科学》2015,36(6):2300-2305
近年来,生物炭应用于土壤后其碳汇能力已成为国内外的研究热点,但是目前研究结果显示其碳汇功能仍然存在争议,生物炭与土壤本体有机碳之间的作用关系还有待探明.研究以水稻土(C3土壤)为供试土壤,向其中添加以水洗(CS)和未水洗(CN)方式处理的玉米(C4作物)秸秆生物炭,生物炭分别按1%和3%(CS1%、CS3%和CN1%、CN3%)的质量比与C3土壤均匀混合,以不添加生物炭(CK)为对照处理,每个处理重复3次,开展室内培养实验,探讨生物炭添加对土壤有机碳矿化的影响.结果表明:1在180 d的培养期内,CS1%、CS3%、CN1%这3种处理的土壤CO2累计释放量分别为1 865.7、1 864.4和1 856.2 m L·kg-1,均高于对照土壤CK的1 779.0 m L·kg-1,但未形成显著差异.处理CN3%的CO2累计释放量最大,为2 289.1m L·kg-1,明显高于其他处理及对照土壤.说明较高添加量下,水洗生物炭CS处理减排效果明显;2同位素分析结果显示,CK处理土壤的本体有机碳的CO2累计释放量最高,达到1 534.2 m L·kg-1,CS3%与CN3%处理土壤本体有机碳的CO2累计释放量分别为1 000.4 m L·kg-1和1 153.7 m L·kg-1,均明显低于对照处理,说明2种生物炭的添加均能抑制土壤本体有机碳的矿化.激发效应的结果也验证了这一点,CS3%处理土壤的激发效应PE值为-34.8%,处理CN3%的PE值为-24.8%,CS生物炭的负激发效应更显著.  相似文献   

8.
黄土区耕地面积占全国耕地面积的15%以上,该区域降水资源贫乏,是我国土壤生产力和土壤有机碳储量最低的区域之一。营养的大量投入可以极大地提高土壤生产力,但对于营养添加下土壤CO_2排放有何变化以及是如何改变黄土区土壤环境,进而影响土壤呼吸及温度敏感性还尚不清楚。本文以长武实验田的黑垆土作为研究对象,分别对N12(施氮量120 kg?hm~(-2))土样设置不添加、添加磷源以及CK(长期连作不施肥)土样设置不添加、添加磷源、碳源、碳磷源(共计6个处理),比较分析在15℃和25℃培养下土壤呼吸速率的变化,以及培养周期内土壤温度敏感性Q_(10)(即温度每升高10℃,温室气体排放速率变化的倍数)的变化趋势。通过对呼吸前后土壤pH值、全碳全磷、有机碳、速效磷、硝态氮、铵态氮以及微生物生物量碳磷(MBC、MBP)的测定,分析其影响因素。碳磷添加在一定程度上提高了土壤的呼吸速率,其中碳源的添加明显增强了土壤呼吸速率以及土壤Q_(10)值。碳磷添加大幅度提高了土壤全碳、速效磷含量以及微生物活性,15℃条件培养后,土壤微生物生物量最高。碳磷添加后,土壤呼吸速率与土壤pH、全碳、铵态氮、MBC呈极显著相关关系。该研究为黄土区土壤生产力的提高以及降低温室气体的排放、恢复和改善生态环境提供理论依据。  相似文献   

9.
为探究土壤呼吸、土壤微生物生物量碳氮及水热因子对生物炭和秸秆添加的响应,采用LI-8100 土壤碳通量测量仪(LI-COR,Lincoln,USA)测定了常规施肥(CK)、常规施肥+2.25 t·hm-2生物炭-C(T1)、常规施肥+2.25 t·hm-2秸秆-C(T2)、常规施肥+1.125 t·hm-2生物炭-C+...  相似文献   

10.
田冬  高明  黄容  吕盛  徐畅 《环境科学》2017,38(7):2988-2999
土壤呼吸是农田生态系统碳排放的主要途径,为研究土壤呼吸、其组分和水热因子对秸秆与生物炭还田的响应,在重庆国家紫色土肥力与肥料效益长期监测基地采用根系排除法联合运用土壤呼吸自动监测系统(ACE-002/OPZ/SC)测定了无物料还田(CK)、秸秆还田(CS)、秸秆+速腐剂还田(CSD)、生物炭还田(BC)、秸秆+生物炭1∶1还田(CSBC)5种处理下的紫色土丘陵区油菜/玉米轮作制中油菜和玉米生长季的土壤呼吸及其水热因子,并计算了根系呼吸贡献.结果表明,秸秆与生物炭还田显著影响土壤呼吸季节性变化特征和峰值,除BC处理外,其他处理均促进了土壤呼吸和碳排放;油菜季土壤呼吸呈单峰曲线,在0.12~2.29μmol·(m~2·s)~(-1)波动,不同处理土壤呼吸差异显著,表现为CSCSDCSBCCKBC处理;玉米季各处理土壤呼吸变化较复杂,变化范围为1.02~15.32μmol·(m~2·s)~(-1),其中CS、CSD和CSBC呈双峰型曲线,CK和BC呈单峰曲线.土壤异养呼吸能够解释土壤总呼吸变化的86.50%~93.94%,各处理的玉米季根系呼吸贡献(26.49%~32.86%)显著低于CK处理(53.65%).土壤呼吸速率的变化主要受5cm土壤温度控制,与土壤含水量无显著关系;5cm土壤温度能够解释土壤呼吸季节变化的82%~94%.土壤呼吸的温度敏感性系数Q10值在3.28~4.47之间,与CK处理相比,CS、CSD、CSBC处理的Q10分别降低了26.62%、18.12%、20.58%;而BC处理则增大了12.53%.水热双因子对土壤呼吸不存在协同作用,仅用土壤温度单因子指数函数可较好地模拟土壤呼吸速率的动态变化.可见,秸秆、秸秆+速腐剂和秸秆+生物炭还田显著促进了土壤呼吸,生物炭还田抑制了土壤呼吸.  相似文献   

11.
为确定生物炭对土壤呼吸速率以及土壤碳组分的影响,采用田间小区试验,以苹果果树枝条生物炭为试验材料,研究了添加0、20、40、60、80 t/hm2的苹果果树枝条生物炭后,小麦生态系统呼吸(Re)、土壤呼吸(Rs)、植物呼吸(Rp)、土壤TOC(总有机碳)、土壤POC(颗粒有机碳)、WSOC(土壤水溶性有机碳)和土壤AOC(易氧化有机碳)的变化以及各指标之间的相关性.结果表明,添加生物炭显著提高了小麦生态系统呼吸速率、土壤呼吸速率和植物呼吸速率,与对照相比分别增加了9.98%~27.57%、9.33%~19.47%和10.18%~30.14%,并且生物炭施用量为20和40 t/hm2时土壤呼吸速率显著高于其他两个处理,而对于小麦生态系统呼吸速率和植物呼吸速率来说,施用40 t/hm2生物炭时其值最高.对于土壤碳组分,施用生物炭显著提高了0~20 cm土层中土壤w(TOC)、w(POC)和w(AOC),并且土壤w(TOC)和w(POC)与生物炭施用量呈极显著正相关.对于WSOC而言,当生物炭施用量高于40 t/hm2时其值显著降低,与对照相比,0~10、>10~20和>20~30 cm三个土层中w(WSOC)分别降低了21.82%~28.37%、35.88%~36.58%和32.28%~44.07%.研究显示,适量施用生物炭能够提高土壤w(TOC)、w(POC)和w(AOC)而降低了w(WSOC),但同时也增加了小麦生态系统呼吸速率.   相似文献   

12.
增温和增雨对黄土丘陵区撂荒草地土壤呼吸的影响   总被引:1,自引:5,他引:1  
明确气候变化背景下脆弱生境地区生态系统土壤呼吸的变化趋势及驱动因素,对理解区域碳循环以及生态系统碳源汇功能转换具有重要意义.以陕北黄土丘陵区自然撂荒恢复12 a的草地为研究对象,采用人工气候箱(OTC)和人工增加自然降雨的方式模拟了气候变暖、降水增加及其交互作用.通过结合野外监测与室内分析,探究了土壤水热、养分和土壤呼吸速率对增温增雨的响应特征,并进一步分析了影响土壤呼吸改变的关键因素.结果表明:(1)增温显著提高了5 cm土壤温度,在整个取样年平均增加1.34℃,而增雨显著降低了5 cm土壤温度,在整个取样年平均降低了0.88℃,同时增加了土壤水分含量,2018年和2019年增雨处理土壤水分含量分别高出对照13.12%和16.45%.此外,与对照相比,增温增雨的交互作用既增加了土壤温度,也提高了土壤水分,增温和增雨在影响土壤温度和水分含量上起到了相互拮抗的作用.(2)增雨显著增加了土壤有机碳、可溶性有机碳和活性有机碳含量,改变了土壤元素计量比以及活性-惰性碳组分的分配特征,而增温对有机碳的影响不显著.此外,土壤全氮全磷以及速效氮磷养分在不同处理间差异不显著.(3)增雨显著增加了土壤呼...  相似文献   

13.
吴静  陈书涛  胡正华  张旭 《环境科学》2015,36(4):1497-1506
为研究不同温度下的土壤微生物呼吸及其与水溶性有机碳(DOC)和转化酶的关系,设置了室内培养实验.采集南京市周边老山、紫金山、宝华山的土壤,研究不同土壤的微生物呼吸对温度升高的响应规律,并分析土壤DOC含量及转化酶活性.结果表明,不同土壤的累积微生物呼吸与土壤温度之间的关系均可用指数方程描述,其P值均达到极显著水平(P0.001),不同地点土壤的微生物呼吸温度敏感系数(Q10值)在1.762~1.895之间变异.累积土壤微生物呼吸的Q10值随着土壤温度升高表现出降低的趋势.培养后27 d土壤微生物呼吸的Q10值与培养后1 d的Q10值无显著差异(P0.05),这表明难分解有机质的温度敏感性与易分解有机质的温度敏感性一致.对于所有土壤而言,累积土壤微生物呼吸与DOC含量之间存在极显著(P=0.003)的线性回归关系,DOC可以解释累积土壤微生物呼吸31.6%的变异性.无论是单独分析不同土壤还是综合所有土壤的测定结果,累积微生物呼吸与土壤转化酶活性均存在极显著(P0.01)的一元线性回归关系,由此说明转化酶活性是衡量土壤微生物呼吸大小的一个较好的指标.  相似文献   

14.
为研究臭氧浓度升高条件下土壤湿度对农田土壤微生物呼吸温度敏感性的影响,采集经过3个生长季臭氧(100 nL.L-1)熏蒸及对照(CK)处理的农田土壤,在不同土壤湿度下研究土壤微生物呼吸对温度升高的响应规律.结果表明,在土壤湿度适宜的情况下,无论臭氧浓度升高处理还是对照处理中的土壤微生物呼吸均与土壤温度呈现出极显著的指数回归关系.就整个培养试验阶段的平均值而言,CK和100 nL.L-1臭氧处理下的平均土壤呼吸速率分别为0.48和0.33μmol.(m2.s)-1,前者比后者高约45%.臭氧浓度升高显著抑制了土壤微生物呼吸速率,并且显著降低了土壤微生物呼吸的温度敏感性.进一步的结果表明,正常土壤中土壤微生物呼吸的Q10随土壤湿度增加(20%~35%)而下降,而臭氧浓度升高改变了土壤中两者间的这种规律.综合本研究中的结果与以往关于土壤呼吸温度敏感性的研究结果,将Q10与土壤湿度(体积含水量)进行回归分析,可见两者间呈现极显著的二次函数关系,由此可推断其最大Q10值对应的土壤含水量在20%~25%范围内.  相似文献   

15.
研究生物炭不同施用量施用5 a后桉树人工林土壤有机碳组分的变化特征,明确生物炭施用下土壤的固碳潜力,为桉树林业废弃物生物炭的土壤改良效应提供科学依据.基于2017年建立的桉树人工林生物炭中长期定位试验,以桉树人工林废弃枝条为原料,在500℃条件下厌氧制备生物炭,选取CK (0%)、T1(0.5%)、T2(1.0%)、T3(2%)、T4(4%)和T5(6%)这6个处理,一次性施用生物炭5 a后测定不同处理下有机碳组分含量特征.结果表明:①与对照相比,土壤有机碳及其组分随生物炭施用量的增加而增大,且在T4或T5达到最大值,土壤有机碳、可溶性有机碳、易氧化态有机碳、颗粒有机碳、微生物生物量碳和碳储量分别增加了101.62%、67.46%、143.03%、164.78%、110.88%和41.73%.②随着生物炭施用量的增加,各生物炭处理土壤轻组有机碳和重组有机碳含量在0~10、10~20、20~30 cm土层的增幅分别为41.41%~140.63%、9.26%~87.04%、-19.54%~106.90%和15.32%~78.99%、15.72%~75.25%、89.49%~148.64%.0~30 cm土层土壤轻组有机碳和重组有机碳含量的平均值亦呈现增大的趋势,土壤碳库中以较稳定的重组有机碳为主.③土壤有机碳、碳储量和有机碳组分含量均随着土层的加深而减小.总体上,生物炭施用5 a显著增加了土壤有机碳和碳组分含量,有利于提高土壤固碳能力和土壤稳定性碳库,生物炭施用是提升桉树林土壤质量的有效措施.研究结果可为林业废弃物资源化利用和桉树人工林土壤肥力提升提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号