首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Out of an array of bacterial strains isolated from soil contaminated with effluents from electroplating wastewater, Bacillus coagulans exhibited the maximum Cr(VI) reduction potential. The feasibility of an immobilized B. coagulans bioreactor for hexavalent chromium reduction was investigated. Experimental results demonstrated that near complete removal of Cr(VI) was achieved in the reactor with an initial Cr(VI) concentration of 26 mg/l and reactor time of 24 h. The removal efficiency in the bioreactor was significantly affected by the influent Cr(VI) concentration, the Cr(VI) loading rate, the reaction time and the amount of Cr(VI) reduced by the biomass.  相似文献   

2.
This study presents simultaneous hexavalent chromium (Cr(VI)) reduction and phenol degradation using Stenotrophomonas sp., isolated from tannery effluent contaminated soil. Phenol was used as the sole carbon and energy source for Cr(VI) reduction. The optimization of different operating parameters was done using Placket–Burman design (PBD) and Box–Behnken design (BBD). The significant operating variables identified by PBD were initial Cr(VI) and phenol concentration, pH, temperature, and reaction time. These variables were optimized by a three-level BBD and the optimum initial Cr(VI) concentration, initial phenol concentration, pH, temperature, and reaction time obtained were 16.59 mg/l, 200.05 mg/l, 7.38, 31.96 °C and 4.07 days, respectively. Under the optimum conditions, 81.27 % Cr(VI) reduction and 100 % phenol degradation were observed experimentally. The results concluded that the Stenotrophomonas sp. could be used to decontaminate the effluents containing Cr(VI) and phenol effectively.  相似文献   

3.
Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24–120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24–48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH?7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 μmol Cr(VI)?min?1?mg?1 protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg2+. Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.  相似文献   

4.
Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz   总被引:2,自引:0,他引:2  
Zhang XH  Liu J  Huang HT  Chen J  Zhu YN  Wang DQ 《Chemosphere》2007,67(6):1138-1143
Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water.  相似文献   

5.
A microbial consortia consisting of three bacteria isolated from tanning and textile wastewaters revealed high capacity to simultaneously bioaccumulate dye and Cr(VI). The identity of the bacteria were determined by 16S rRNA gene analysis to be closely related to Ochrobactrium sp., Salmonella enterica and Pseudomonas aeruginosa. Dependence of initial pH values and range of concentrations of the dye Reactive Black B (33.2-103.1 mg l(-1)) and Cr(VI) (19.9-127.6 mg l(-1)) were examined to find the effect of pH on the dye and Cr(VI) bioaccumulation. Optimal pH for growth of the consortia in media containing 35 mg l(-1) dye and 50 mg l(-1) Cr(VI) was determined to be around 8. The Cr(VI) bioaccumulation by the consortia was rapid in media containing molasses with or without reactive dye with a maximum Cr(VI) bioaccumulation yield ranging from 90% to 99% within a 2-4d period. A slightly lower yield for the dye bioaccumulation was measured with a maximum dye bioaccumulation of 80% at 59.3 mg l(-1) dye and 69.8 mg l(-1) Cr(VI). The highest specific Cr uptake value was obtained as 76.7 mg g(-1) at 117.1 mg l(-1) Cr(VI) and 50.8 mg l(-1) dye concentration. This ability to bioaccumulate dye and Cr(VI) was more efficient than the enriched sludge from which they were isolated.  相似文献   

6.
Chromite ore processing residues (COPR) is the source of the Cr(VI) contamination in the environment. Pannonibacter phragmitetus BB was used to treat two different types of COPRs in this research. The water-soluble Cr(VI) of COPR A and B is 3,982.9 and 1,181.4 mg/kg, respectively. In the column biotreatment process, P. phragmitetus BB can reduce Cr(VI) in the leachate to an undetectable level at the flow rate of 1 and 2 ml/min. In the direct biotreatment process, Cr(VI) in the liquid supernatant of COPR A and B decreased from 265 and 200 mg/l to 145 and 40 mg/kg after 240 h of incubation. In one-step and two-step biotreatment processes, Cr(VI) in the liquid supernatant of both COPRs can be reduced to an undetectable level. The toxicity characteristic leaching procedure results indicate that the Cr(VI) concentration of treated COPR A (3.48 mg/l) is lower than the identification standards for hazardous wastes of China (5 mg/l) (GB 5085.6-2007). The information obtained in this study has significance for the application of P. phragmitetus BB to remediate COPR contamination.  相似文献   

7.
The novel Serratia proteamaculans isolated from a chromium-contaminated site was tolerant to a concentration of 500 mg Cr(VI)/l. The optimum pH and temperature for reduction of Cr(VI) by S. proteamaculans were found to be 7.0 and 30 °C, respectively. The Cr(VI) reduction rate decreased with the increase in Cr(VI) concentration from 100 to 400 mg/l, suggesting the enzymatic chromium reduction. Resting and permeabilised cell assays provided the better evidence that chromate reduction in S. proteamaculans is enzymatic. Reduction by cell-free filtrate shows no extracellular chromate-reducing activity, revealing that this activity may be associated to membrane fraction and/or cytosolic fraction. Assays conducted with cytosolic and particulate fraction of S. proteamaculans confirmed the role of membrane-bound proteins in Cr(VI) reduction. Furthermore, chromium reduced by heat-treated cells suggests that membrane-associated chromate reductase activity of S. proteamaculans is preceded by its adsorption on the cell surface.  相似文献   

8.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   

9.
Polti MA  Amoroso MJ  Abate CM 《Chemosphere》2007,67(4):660-667
Forty-one isolated actinomycetes were used to study qualitative and semi-quantitative screening of chromium(VI) resistance. Chromate-removing activity was estimated using the Cr(VI) specific colorimetric reagent 1,5-diphenylcarbazide. Twenty percent of the isolates from El Cadillal (EC) and 14% of isolates from a copper filter plant (CFP) were able to grow at 13 mM of Cr(VI). All isolates from sugar cane (SCP) could grow up to Cr(VI) concentration of 17 mM. EC, CFP and SCP strains were able to remove 24%, 30% and more than 40% of Cr(VI), respectively. The highest and lowest Cr(VI) specific removal values were 75.5 mg g(-1) cell by M3 (CFP), and 1.5 mg g(-1) cell by C35 (EC) strains. Eleven Cr(VI) resistant strains were characterized and identified as species of the genera Streptomyces (10) and Amycolatopsis (1). Differences on actinomycete community composition between contaminated and non-contaminated soil were found. This study showed the potential capacity of actinomycetes as tools for Cr(VI) bioremediation.  相似文献   

10.
The aim of this research was to investigate hexavalent chromium, Cr(VI), reduction by activated sludge and to evaluate the use of continuous-flow activated sludge systems for the treatment of Cr(VI)-containing wastewater. Three series of experiments were conducted using two parallel lab-scale activated sludge systems. During the first experiment, one system was used as a control, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5mg l(-1). For all concentrations added, approximately 40% of the added Cr(VI) was removed during the activated sludge process. Determination of chromium species in the dissolved and particulate phase revealed that the removed Cr(VI) was sorbed by the activated sludge flocs mainly as trivalent chromium, Cr(III), while the residual chromium in the dissolved phase was mainly detected as Cr(VI). Activated sludge ability to reduce Cr(VI) was independent of the acclimatization of biomass to Cr(VI) and it was not affected by the toxic effect of Cr(VI) on autotrophic and heterotrophic microorganisms. During the second experiment, both systems were operated under two different hydraulic residence time (theta equal to 20 and 28h) and three different initial organic substrate concentration (COD equal to 300, 150 and 0mg l(-1)). Cr(VI) reduction was favored by an increase of theta, while it was limited by influent COD concentration. Finally, at the last experiment the effect of anoxic and anaerobic reactors on Cr(VI) reduction was investigated. It was observed that the use of an anoxic zone or an anaerobic-anoxic zone ahead of the aerobic reactor favored Cr(VI) reduction, increasing mean percentage Cr(VI) reduction to almost 80%.  相似文献   

11.
Cr(VI) is far more soluble and toxic than Cr(III). Sediment pore water was investigated in a river adjacent to the property of a large former tannery, into which Cr-contaminated effluent was discharged over a 55-year period, and where extremely high Cr concentrations have been found in the sediments. Dialysis cells, or peepers, were used to generate depth profiles of Cr concentration in sediment pore water. Samples were analyzed for total Cr using inductively coupled plasma-mass spectrometry (ICP-MS) and for Cr species using high performance liquid chromatography (HPLC)-ICP-MS. The results show an absence of Cr(VI) in all samples. Furthermore, incomplete recovery of Cr(VI) added to the samples collected at the locations with highest sediment Cr concentrations indicate strong reducing conditions at those locations, which are not conducive to the presence of Cr(VI).  相似文献   

12.

Purpose

This study had an objective to identify the most potent chromium-resistant bacteria isolated from tannery effluent and apply them for bioremediation of chromium in tannery effluents.

Methods

Two such strains (previously characterized and identified by us)??Enterobacter aerogenes (NCBI GenBank USA Accession no. GU265554) and Acinetobacter sp. PD 12 (NCBI GenBank USA Accession no. GU084179)??showed powerful chromium resistivity and bioremediation capabilities among many stains isolated from tannery waste. Parameters such as pH, concentration of hexavalent chromium or Cr (VI), and inoculum volume were varied to observe optimum bioconversion and bioaccumulation of Cr (VI) when the said strains were grown in M9 minimal salt media. E. aerogenes was used to remediate chromium from tannery effluents in a laboratory level experiment.

Results

Observation by Scanning Electron Microscope and chromium peak in Energy Dispersive X-ray Spectroscopic microanalysis revealed that E. aerogenes helped remediate a moderate amount of Cr (VI) (8?C16?mg?L?1) over a wide range of pH values at 35?C37°C (within 26.05?h). High inoculum percentage of Acinetobacter sp. PD 12 also enabled bioremediation of 8?C16?mg?L?1 of Cr (VI) over a wide range of temperature (25?C37°C), mainly at pH?7 (within 63.28?h). The experiment with real tannery effluent gave very encouraging results.

Conclusion

The strain E. aerogenes can be used in bioremediation of Cr (VI) since it could work in actual environmental conditions with extraordinarily high capacity.  相似文献   

13.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

14.
Biosorption of cadmium and copper contaminated water by Scenedesmus abundans   总被引:14,自引:0,他引:14  
Terry PA  Stone W 《Chemosphere》2002,47(3):249-255
Experiments were conducted comparing the individual removals of cadmium and copper from water via biosorption using Scenedesmus abundans, a common green algae, to removal in a multi-component system to determine competitive effects, if any, between the metals. The goal was to characterize the biological treatment of water contaminated with heavy metals using live aquatic species. In addition, experiments were performed to measure cell viability as a function of metal concentration and also to compare metal removal using living species to that using nonliving ones. It was shown that, while both living and nonliving S. abundans removed cadmium and copper from water, living algae significantly outperformed nonliving algae. Further, in characterizing biosorption by three concentrations of live S. abundans, capacity curves were created comparing the metal biosorbed per mass algae to the initial metal concentration in solution. The algae concentration was not a factor in the biosorption of either metal individually, such that the capacity of the algae for the metal increased with decreasing algae concentration. At the lowest algae concentration considered, competitive effects were observed at copper and cadmium concentrations above 4 mg/l each. At the highest algae concentration considered, no competitive effects were observed in the range of cadmium and copper concentrations studied (1-7 mg/l). It was concluded that biological treatment of heavy metal contaminated water is possible and that at adequately high algae concentrations, multi-component metal systems can be remediated to the same level as individual metals.  相似文献   

15.
Sorption of Cr(VI) was carried out from dilute solutions using live and pretreated biomass in a batch mode. Effects of agitation time, adsorbent dosage and pH were examined. The autoclaved biomass that showed maximum adsorption capacity (Q(0)=0.335 mg g(-1)) was used as an adsorbent in column studies. The optimized flow rate of 2.5 ml min(-1) and bed height 10 cm were used to determine the effect of metal ion concentration on removal of Cr(VI). Applying the BDST model to calculate the adsorption capacity (N(0)) of column, which showed 4.56 x 10(-5), 7.28 x 10(-5), 6.89 x 10(-5), 3.07 x 10(-5), 2.80 x 10(-5)mg g(-1) for 4, 8, 12, 16 and 20 mg dm(-3) of Cr(VI), respectively. Batch sorption proved to be more efficient than the column sorption and hence batch sorption was used to remove Cr(VI) from a textile dyeing industry wastewater. The phytotoxic effect of treated and untreated wastewater was studied against Zea mays. Toxicity was reduced by 50% in the treated effluent.  相似文献   

16.

In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0–1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.

  相似文献   

17.
Chen Z  Huang Z  Cheng Y  Pan D  Pan X  Yu M  Pan Z  Lin Z  Guan X  Wu Z 《Chemosphere》2012,87(3):211-216
In this study, we investigated the Cr(VI) uptake mechanism in an indigenous Cr(VI)-tolerant bacterial strain -Bacillus cereus through batch and microscopic experiments. We found that both the cells and the supernatant collected from B. cereus cultivation could reduce Cr(VI). The valence state analysis revealed the complete transformation from Cr(VI) into Cr(III) by living B. cereus. Further X-ray absorption fine structure and Fourier transform infrared analyses showed that the reduced Cr(III) was coordinated with carboxyl and amido functional groups from either the cells or supernatant. Scanning electron microscopy and atomic force microscopy observation showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. However, Cr(III) could also be detected in bacterial inner portions by using transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy. Through quantitative analysis of chromium distribution, we determined the binding ratio of Cr(III) in supernatant, cell debris and cytoplasm as 22%, 54% and 24%, respectively. Finally, we further discussed the role of bacterium-origin soluble organic molecules to the remediation of Cr(VI) pollutants.  相似文献   

18.

Background and purpose

The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI).

Methods

The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated.

Results

The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents (P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model.

Conclusion

The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model.  相似文献   

19.
Park D  Yun YS  Ahn CK  Park JM 《Chemosphere》2007,66(5):939-946
The dead biomass of the brown seaweed, Ecklonia sp., is capable of reducing toxic Cr(VI) into less toxic or nontoxic Cr(III). However, little is known about the mechanism of Cr(VI) reduction by the biomass. The objective of this work was to develop a kinetic model for Cr(VI) biosorption, for supporting our mechanism. The reduction rate of Cr(VI) increased with increasing total chromate concentration, [Cr(VI)], and equivalent concentration of organic compounds, [OCs], and decreasing solution pH. It was found that the reduction rate of Cr(VI) was proportional to [Cr(VI)] and [OCs], suggesting the simple kinetic equation -d[Cr(VI)]/dt=k[Cr(VI)][OCs]. When considering the consumption of organic compounds due to the oxidation by Cr(VI), an average rate coefficient of 9.33 (+/-0.65)microM(-1)h(-1) was determined, at pH 2. Although the function of the pH could not be expressed in a mechanistic manner, an empirical model able to describe the pH dependence was obtained. It is expected that the developed rate equation could likely be used for design and performance predictions of biosorption processes for treating chromate wastewaters.  相似文献   

20.
Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7,030 ng/l, 13 to 5,400 ng/l, and 66 to 790 ng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at <0.02-36 microg/g dry weight, AHTN at <0.02-7.2 microg/g dry weight, and HHCB-lactone at <0.05-17 microg/g dry weight. Based on the daily flow rates and mean concentrations of polycyclic musks, the estimated discharge of total polycyclic musks to the rivers was 21 g/day from Plant A and 31 g/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two WWTPs ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号