首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.  相似文献   

2.
The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.  相似文献   

3.
The application of on-site waste treatment significantly reduces the need for expensive waste collection and transportation in rural areas; hence, it is considered of fundamental importance in developing countries. In this study, the effects of in-field operation of two types of mini-scale on-site solid waste treatment facilities on de-centralized communities, one using mesophilic two-phase anaerobic digestion combined with composting (TPAD, 50 kg/d) and another using decentralized composting (DC, 0.6–2 t/d), were investigated. Source-separated collection was applied to provide organic waste for combined process, in which the amount of waste showed significant seasonal variation. The highest collection amount was 0.18 kg/capital day and 0.6 kg/household day. Both sites showed good performance after operating for more than 6 months, with peak waste reduction rates of 53.5% in TPAD process and 63.2% in DC process. Additionally, the windrow temperature exceeded 55 °C for >5 days, indicating that the composting products from both facilities were safe. These results were supported by 4 days aerobic static respiration rate tests. The emissions were low enough to avoid any impact on nearby communities (distance <100 m). Partial energy could be recovered by the combined process but with complicated operation. Hence, the choice of process must be considered in case separately.  相似文献   

4.
We estimated the amount of waste electrical and electronic equipment (WEEE) generated in South Korea by using the population balance model (PBM) based on a lifespan distribution analysis. This is the first study to apply PBM to estimate WEEE generation in South Korea. The lifespan distribution analysis of electrical and electronic equipment (EEE) was based on the results of a questionnaire survey of 1000 households, which were analyzed with the Weibull distribution. As a result, we could estimate the domestic service lifespan and lifespan distribution shape parameter for eight selected products. Using the lifespan distribution analysis and other data, such as the shipment volume and the number of products owned by households, we estimated the amount of WEEE generated for the eight selected items from 2000 to 2020. We found that 1.2 million air conditioners, 2.5 million televisions, 1.3 million microwave ovens, 1.2 million kimchi refrigerators, 17.0 million mobile phones, 1.7 million refrigerators, 2.0 million vacuum cleaners, and 1.4 million washing machines were generated as WEEE in 2010. We also compared our WEEE estimates with the number of items collected through the official WEEE recycling program from 2003 to 2009 and found that in 2009 washing machines had the highest collection rate (28%) and air conditioners had the lowest rate (7%).  相似文献   

5.
Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.  相似文献   

6.
The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64 ± 15 g/patient/d for the clinical pathology laboratory, 7.2 ± 1.6 g/patient/d for the X-ray laboratory, 8.3 ± 5.1 g/patient/d for the surgery departments and 24 ± 9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03 ± 0.003 L/patient/d and for the X-ray laboratory was 0.06 ± 0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.  相似文献   

7.
Fuel consumption and collection costs of solid waste were evaluated by the aid of a simulation model for a given collection area of a medium-sized Italian city. Using the model it is possible to calculate time, collected waste and fuel consumption for a given waste collection route. Starting from the data for the current waste collection scenario with a Source Segregated (SS) intensity of 25%, all the main model error evaluated was ?1.2. SS intensity scenarios of 25%, 30%, 35% and 52% were simulated. Results showed an increase in the average fuel consumed by the collection vehicles that went from about 3.3 L/tonne for 25% SS intensity to about 3.8 L/tonne for a SS intensity of 52%. Direct collection costs, including crews and vehicle purchase, ranged from about 40 €/tonne to about 70 €/tonne, respectively, for 25% and 52% SS intensity. The increase in fuel consumption and collection costs depends on the density of the waste collected, on the collection vehicle compaction ratio and on the waste collection vehicle utilization factor (WCVUF). In particular a reduction of about 50% of the WCVUF can lead to an average increase of about 80% in fuel consumption and 100% in collection costs.  相似文献   

8.
This study presents and analyzes the data of the Italian system for take-back and recovery of waste electrical and electronic equipments (WEEEs) in the start-up period 2008–2010. The analysis was focused particularly on the data about the treatment of end-of-life cooling and freezing equipments. In fact, the wastes of cooling and freezing equipments have a high environmental impact. Indeed, in their compressor oil and insulation polyurethane (PU) foams chlorofluorocarbon (CFC) ozone-depleting gases are still present. In the period 2001–2004 Northern Italy resulted the main source in Europe of CFCs. The European Directive on WEEE management was enacted in 2002, but in Italy it was implemented by the legislative Decree in 2005 and it became operational in 2008. Actually, in 2008 the national WEEE Coordination Centre was founded in order to organize the WEEE pick-up process and to control collection, recovery and recycling targets. As a result, in 2010 the average WEEE collection per capita exceeded the threshold of more than 4 kg per inhabitant, as well as cooling and freezing appliances represented more than one fourth of the Italian WEEE collection stream. During the treatment of end-of-life cooling and freezing equipments, CFCs were recovered and disposed principally by burner methods. The analyses of defined specimens collected in the treatment facilities were standardized to reliably determine the amount of recovered CFCs. Samples of alkaline solid salt, alkaline saline solution, polyurethane matrix and compressor oil collected during the audit assessment procedure were analyzed and the results were discussed. In particular, the analysis of PU samples after the shredding and the warm pressing procedures measured a residual CFCs content around 500–1300 mg/kg of CFCs within the foam matrix.  相似文献   

9.
An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this.  相似文献   

10.
A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel–cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel–cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L16 (44) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5 h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition.  相似文献   

11.
Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.  相似文献   

12.
The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation–flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD.  相似文献   

13.
The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.  相似文献   

14.
Kolkata is one of four metropolitan cities in India. With an area of 187.33 sq km and a population of about 8 million, it generates around 3,000 t d?1 of municipal solid waste (MSW) at a rate of 450–500 g per capita per day. With rapid urbanization as a result of planned and unplanned growth and industrialization, the problems associated with handling MSW have increased at an alarming rate over the past few years. No source segregation arrangement exists; there is only limited (60%) house-to-house collection; and 50–55% open vats are used in the present collection system. The operational efficiency of the Kolkata Municipal Corporation (KMC) transport system is about 50%, with a fleet composed of about 30–35% old vehicles. The majority (80%) of these, particularly the hired vehicles, are more than 20 years old. The newly added areas covered by KMC have even lower collection efficiencies, and only an informal recycling system exists. The waste collected has a low energy value (3,350–4,200 kJ kg?1) with high moisture and inert content. A 700 t d?1 compost plant set up in 2000 has not been functioning effectively since 2003. Open dumping (without liners and without a leachate management facility) and the threat of groundwater pollution, as well as saturation of an existing landfill site (Dhapa) are the most pressing problems for the city today. KMC spends 70–75% of its total expenditures on collection of solid waste, 25–30% on transportation, and less than 5% on final disposal arrangements. The Kolkata Environmental Improvement Project, funded by the Asian Development Bank, is seen as only a partial solution to the problem. A detailed plan should emphasize segregation at the source, investment in disposal arrangements (including the use of liners and leachate collection), and an optimized transport arrangement, among improvements.  相似文献   

15.
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories – urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union’s solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.  相似文献   

16.
In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.  相似文献   

17.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

18.
Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow.  相似文献   

19.
Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS2) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O2 concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg?1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H2S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.  相似文献   

20.
Environmentally safe disposal of end-of-life (EoL) or discarded mobile phone is a serious problem on account of their ever increasing number and toxic metals contents. In the present work, metal toxicity of mobile phone plastics, printed wire boards (PWBs) and batteries were assessed through dynamic batch leaching using Milli Q (MQ) water. Phone plastics failed Toxicity Characterization Leaching Procedure (TCLP) and Waste Extraction Test (WET) for Pb as the cumulative amount of Pb leached from plastics (5.33 mg/l) exceeded the regulatory limits (5.0 mg/l) used in characterizing a waste as hazardous. Similarly, the average cumulative amount (21.83 mg/l) of Ni leached from PWBs exceeded the regulatory limit of 20 mg/l and thus PWBs failed WET. Metals leached from batteries in small amounts (Cr: 0.40 mg/l and Ni: 0.15 mg/l). The presence of Fe in the batteries and its precipitation as oxides/hydroxides in the leaching solution hindered the leaching of other metals in MQ water. Both plastics and PWBs should be treated as hazardous waste and should not be disposed in open landfills. Further, MQ water leaching could provide good simulation of metals leaching from the mobile phones disposed at landfill sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号