共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities. 相似文献
3.
Characterization of food waste and bulking agents for composting 总被引:1,自引:0,他引:1
The characterization of food waste (FW) and locally available bulking agents (BA) are a prerequisite to optimizing compost recipes. This study measured the variation in FW characteristics (pH, dry matter (DM), carbon (C), wet bulk density and Total Kjeldahl Nitrogen (TKN)) produced by a restaurant and a community kitchen in downtown Montreal, Canada from May to August 2004. The project also measured the mass of FW produced by another restaurant and a group of 20-48 households, from June to August 2004. Locally available BA (hay, straw, pine wood shavings, cardboard, left over cattle feed and wheat residue pellets) were also characterized to formulate composting recipes based on the FW characteristics observed during a period representative of winter and summer conditions. Residential and restaurant FW characteristics varied significantly over the summer months, although the mass produced remained constant at 0.61 and 0.56 kg capita(-1)day(-1), respectively. In addition, the number of customers served by the restaurant increased by nearly 50% from June to August. The BA with the highest moisture adsorption capacity was found to be the wheat residue pellets, followed by chopped straw. Wheat residue pellets, chopped hay and left over cattle feed all presented a balanced C/N ratio. Wheat residue pellets and wheat straw, chopped hay and cardboard demonstrated neutral pH values. Based on the variable FW characteristics and monthly production rates, the formulation of recipes indicates that compost facilities must be flexible enough to handle seasonal variations of as much as 50% by volume. 相似文献
4.
Effectiveness of three bulking agents for food waste composting 总被引:3,自引:0,他引:3
Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment. 相似文献
5.
The objective of the work was to provide a method to predict CO2 and NH3 yields during composting of the biodegradable fraction of municipal solid wastes (MSW). The compostable portion of MSW was simulated using three principal biodegradable components, namely mixed paper wastes, yard wastes and food wastes. Twelve laboratory runs were carried out at thermophilic temperatures based on the principles of mixture experimental and full factorial designs. Seeded mixed paper (MXP), seeded yard waste (YW) and seeded food waste (FW), each composted individually, produced 150, 220 and 370 g CO2-C, and 2.0, 4.4 and 34 g NH3-N per dry kg of initial substrate, respectively. Several experimental runs were also carried out with different mixtures of these three substrates. The effect of seeding was insignificant during composting of food wastes and yard wastes, while seeding was necessary for composting of mixed paper. Polynomial equations were developed to predict CO2 and NH3 (in amounts of mass per dry kg of MSW) from mixtures of MSW. No interactions among components were found to be significant when predicting CO2 yields, while the interaction of food wastes and mixed paper was found to be significant when predicting NH3 yields. 相似文献
6.
Food waste has become an increasingly discussed topic in recent years. However, there is little authoritative data on food waste quantities and composition and systematic and comparable data are missing. Household waste composition analyses, which are often carried out routinely at regular or irregular intervals, provide an opportunity for obtaining data about food waste at both local and regional levels. The results of prior waste composition studies are not really comparable due to the different classifications, definitions and methods used; in addition, these are mostly insufficiently described and not reproducible by a third party. The aim of this paper is to discuss a methodology for determining the proportion of food waste in household waste composition studies, by analysing specific problems and possible solutions. For that purpose, findings from the literature are analysed and the approach and results of a composition analysis of residual waste of a stratified sample (urban, rural area) are presented. The study suggests that in order to avoid a significant loss of information, waste should not be sieved before sorting and packed food waste should be classified into the relevant food waste category together with its packaging. The case study showed that the overall influence of the proportion of food packaging included in the food waste category, which amounted to only 8%, did not significantly influence the results and can therefore be disregarded. 相似文献
7.
Tianyu Li Li Liu Xinghua Wei Hongying Zhang Ping Fang 《Waste management (New York, N.Y.)》2014,34(12):2641-2646
To reduce the proportion of food waste in municipal solid waste, a food waste biodegradation experiment with two biodegradation agents was conducted for seven weeks with 500 g of food waste added every day into each disposer. The agent containing four biodegradation bacterial strains showed higher degradation rates and matrix temperatures than that containing two. Furthermore, significant differences in the microbiological community structures of the matrixes were found not only between the two biodegradation systems but also among different stages in the same degradation system based on DGGE profiles. The F2 strain exhibited the highest DGGE optical density (OD) value among biodegradation systems and at all experimental stages, suggesting it was a dominant strain during food waste degradation. 相似文献
8.
Tetsuji Yamada Misuzu Asari Takahiro Miura Tomoyuki Niijima Junya Yano Shin-ichi Sakai 《Journal of Material Cycles and Waste Management》2017,19(4):1351-1360
For 35 years, Kyoto City has conducted detailed household waste composition surveys under the guidance of Kyoto University by dividing household waste into approximately 400 categories. In addition, the city has conducted detailed composition surveys of commercial waste generated by businesses. These surveys show that food loss accounts for approximately 40% of total waste, of which leftovers and untouched food account for about 40% in both households and business facilities. Consequently, the annual generation of household and commercial food loss is estimated at about 30,000 tons. Various efforts have been made to reduce waste, including food loss, but further reduction in environmental burden is needed. Thus, Kyoto City revised the ordinance for waste reduction, and in March 2015, formulated a new municipal waste management plan. The plan not only includes the 2Rs (reduce, reuse), but also, for the first time in Japan, sets quantitative targets for reducing food loss. Kyoto City must ensure that the necessary waste reduction measures are clearly explained to the residents and business operators. To ensure that this plan is successful, it is important to clarify concrete actions that residents and business operators should implement, along with their effects. 相似文献
9.
Jukka M. Kurola Mona Arnold Merja H. Kontro Matti Talves Martin Romantschuk 《Waste management (New York, N.Y.)》2010,30(5):779-786
In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000 ou m?3 of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. 相似文献
10.
Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. 相似文献
11.
Kotte Hewa Praween Madusanka Toshihiko Matsuto Yasumasa Tojo In-Hee Hwang 《Journal of Material Cycles and Waste Management》2017,19(2):804-814
This study was conducted to evaluate the composting processes in Sri Lanka and to identify essential improvements. The study consisted of a questionnaire survey, field observations, and interviews. The main shortcomings identified by this study were: no source separation at origin, and no monitoring for temperature, moisture, stability, or maturity during processes of composting. These problems hinder the smooth operation of the composting processes and lead to low demand for compost. Based on the findings, the recommendations for increasing the demand for compost are performing source separation during waste collections, improvement of processes by monitoring the temperature and moisture, and marketing compost so as to improve the popularity of the compost among farmers. 相似文献
12.
Pereira Beatriz Salustiano Castrisana Raíssa Nobre de Freitas Caroline Contiero Jonas Brienzo Michel 《Journal of Material Cycles and Waste Management》2021,23(4):1365-1373
Journal of Material Cycles and Waste Management - The chemical characterization of the food waste allowed to discriminate between the pre-preparation and post-preparation residues from a... 相似文献
13.
J.V. López Alvarez M. Aguilar Larrucea P. Arraiza Bermúdez B. León Chicote 《Waste management (New York, N.Y.)》2009,29(5):1514-1519
The presence of paper in municipal solid waste (MSW) interferes with the efficiency of composting plants. The compost feedstock to these plants is between 12% and 27% paper on a dry weight basis, with an initial C:N ratio ranging from 32:1 to 57:1. Tests of the last aerobic biodegradability (LAB) of the type of paper present in paper and cardboard packaging were carried out, following UNE-EN 14046 standards. The results obtained, measured through the quantity of CO2 generated over 45 days, compared with the maximum that could be produced (ThCO2), showed that the presence of paper retards, to a great degree, the biodegradation of organic material in general. Specifically, the presence of papers with a degradation D (%) >60% at 45 days (white (W) and recycled paper (R)) could be allowed, but always in proportions that did not exceed 27% in dry weight. These results can be achieved with an industrial level process, pre-treated by trituration. 相似文献
14.
G. Cappai G. De Gioannis M. Friargiu E. Massi A. Muntoni A. Polettini R. Pomi D. Spiga 《Waste management (New York, N.Y.)》2014,34(8):1510-1519
Batch dark fermentation experiments were performed on food waste and mixtures of food waste and wastewater activated sludge to evaluate the influence of pH on biological H2 production and compare the process performance with and without inoculum addition. The effect of a preliminary thermal shock treatment of the inoculum was also investigated as a means to harvest the hydrogenogenic biomass. The best performance in terms of both H2 generation potential and process kinetics was observed at pH = 6.5 under all experimental conditions (no inoculum, and untreated or thermally treated inoculum added). H2 production from food waste was found to be feasible even without inoculum addition, although thermal pre-treatment of the inoculum notably increased the maximum production and reduced the lag phase duration. The analysis of the fermentation products indicated that the biological hydrogen production could be mainly ascribed to a mixed acetate/butyrate-type fermentation. However, the presence of additional metabolites in the digestate, including propionate and ethanol, also indicated that other metabolic pathways were active during the process, reducing substrate conversion into hydrogen. The plateau in H2 generation was found to mirror the condition at which soluble carbohydrates were depleted. Beyond this condition, homoacetogenesis probably started to play a role in the degradation process. 相似文献
15.
Modeling of substrate degradation and oxygen consumption in waste composting processes 总被引:3,自引:0,他引:3
A multi-component modeling system was developed to simulate substrate degradation and oxygen consumption in waste composting processes. Levels of soluble substrate (Ss), insoluble substrate (Si), active biomass (X), inert material, moisture, temperature, and oxygen concentration were considered as state variables. The relationships among these variables were also incorporated within the modeling framework. Three conversion reactions, including growth of aerobic biomass, decay of aerobic biomass, and solubilisation of insoluble substrate, were considered in the simulation system. The modeling inputs included temperature, moisture, oxygen concentration, and initial conditions of the state variables, while the outputs included oxygen uptake accumulation (OUA), oxygen uptake rate (OUR), Ss, Si, and X for representing the substrate degradation and oxygen consumption status. The effectiveness of the developed model was demonstrated through its application to a case study in a 30L vessel over 200h. Through verification-based composting experiments, it was shown that the modeling solutions were consistent with the experimental results with an acceptable accuracy level. Sensitivity analyses of the model showed that an increased maximum microbial growth rate would result in raised OUA, OUR, Ss, and X levels; a decreased biomass decay rate constant would help enhance the composting process. Moreover, variations in the maximum growth rate would affect the composting process more significantly than those of the biomass decay rate constant. 相似文献
16.
de Abreu Íthalo Barbosa Silva de Sousa Maria Helena da Silva Andressa Pereira de Araújo Padilha Carlos Eduardo Sales Aldo Torres da Silva Antonio Samuel Alves Dutra Emmanuel Damilano Menezes Rômulo Simões Cezar 《Journal of Material Cycles and Waste Management》2023,25(3):1309-1324
Journal of Material Cycles and Waste Management - The use of food waste (FW) for the production of biofuels and value-added compounds is growing worldwide. However, the significant chemical... 相似文献
17.
Composting of source separated municipal biowaste has at several plants in Scandinavia been hampered by low pH. In this study the hypothesis that increased aeration would improve the process was tested in full-scale experiments at two large composting plants. The O2 concentrations were high (>15%) even at the low aeration rates, so the prevailing low pH was not due to an anaerobic process environment. In spite of this, increased aeration rates at the start of the process resulted in higher microbial activity, increased pH and a more stable compost product. At one plant the decomposition rate varied in proportion to the aeration rate, to the extent that the temperatures and O2 concentrations were similar during the early processes even though aeration rates varied between 10 and 50 m3/(h, m3 compost). However, increased aeration caused severe drying of the compost, but at one plant the addition of water was adequate to prevent drying. In conclusion, by increasing the aeration rates and adding water to compensate for drying, it was possible to shorten the time needed to produce a stable compost product and thus to increase the efficiency of the composting plants. 相似文献
18.
Sikora LJ 《Waste management (New York, N.Y.)》2004,24(2):139-142
A by-product of the construction aggregate industry is fines or dust that contain trace elements such as zinc and copper and significant amounts of iron, aluminum, silica and potassium. Beneficial uses for these materials have been proposed such as replenishing depleted soils and amendment in mixtures of organic byproducts prior to composting. To evaluate the beneficial uses in composting, outdoor bin studies were conducted using a beef cattle manure, straw and wood chip mixture amended with and without basaltic mineral fines. Temperature differences in composting mixtures of equal volumes, equal moisture and relatively equal material content are considered an indication of differing biological activities [Haug, Compost Engineering Principles and Practice. Ann Arbor Science, Ann Arbor, MI. (1980)]. Temperatures were lower in the mineral fine-treated manure mixture initially. After turning the piles at six weeks, temperatures tended to be higher in the mineral fine amended mixture. Overall, temperatures were not significantly different suggesting that mineral fines amendment does not significantly increase temperature and activity in composting mixtures. 相似文献
19.
The relatively large quantities of waste generated daily in military barracks pose a significant impact on environments in this small island of Taiwan due to limited land and crowded populations. In order to find a suitable handling method to the barracks' characteristics in Taiwan, a comprehensive selection model for various barracks carrying out waste composting was established through personal interviews and questionnaire data analyses on the military barracks. From this, the basic data for this research was also built, to evaluate the experiences and management practices in these facilities. This study found that environmental responsibility and expertise are the primary concerns and considerations among all of the military units when doing waste composting. Support of the commander, organizational image and human resource/facilities are also concerns. To offer the military barracks a selection model and policy guidelines for the waste composting treatment, an itemized score evaluation standard and a selecting chart of composting recycling methods were designed by combining the practical experimental results with economic considerations, waste classification, and Delphi expert technique. 相似文献
20.
This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system. 相似文献