首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, selected agroindustrial solid residues from Brazil – biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk – were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJ kg?1 to 29.14 MJ kg?1, on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation.  相似文献   

2.
A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ?12 MJ/kg for the lower heating value, and >95% durability.  相似文献   

3.
Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM–RS); and (2) dairy manure and rice straw (DM–RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM–RS pile. Also, the SM–RS pile exhibited slightly better performance than the DM–RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI > 120% and PGI > 1.00 signal mature co-composts.  相似文献   

4.
The effects of rice straw addition level on odorous compounds emissions in a pilot-scale organic fraction of municipal solid waste (OFMSW) composting plant were investigated. The cumulative odorous compounds emissions occurred in a descending order of 40.22, 28.71 and 27.83 mg/dry kg of OFMSW for piles with rice straw addition level at ratio of 1:10, 2:10 and 3:10 (mixing ratio of rice straw to OFMSW on a wet basis), respectively. The mixing ratio of rice straw to OFMSW had a statistically significant effect on the reduction of malodorous sulfur compounds emissions, which had no statistically significant effect on the reduction of VFAs, alcohols, aldehydes, ketones, aromatics and ammonia emissions during composting, respectively. The cumulative emissions of malodorous sulfur compounds from piles with the increasing rice straw addition level were 1.17, 1.08 and 0.88 mg/dry kg of OFMSW, respectively. The optimal mixing ratio of rice straw to OFMSW was 1:5. Using this addition level, the cumulative malodorous sulfur compounds emissions based on the organic matter degradation were the lowest during composting of OFMSW.  相似文献   

5.
This study investigated that water washing effects on the metals emission reduction in melting of municipal solid waste incinerator (MSWI) fly ash. Experimental conditions were conducted at liquid-to-solid (L/S) ratio 10, 20, and 100 for water-washing process and its subsequent melting treatment at 1450 °C for 2 h. The simple water-washing process as a pre-treatment for MSWI fly ash can remove most of the chlorides, leachable salts, and amphoteric heavy metals from the MSWI fly ash, resulting in the washed ash having lowered chlorine content. MSWI fly ashes washed by L/S ratio 10 and above that were melted at 1450 °C produced slag containing relatively high vitrificaton ratio of Cu and Pb. Besides, the vitrification ratios of Na, K, Ca, and Mg in washed MSWI fly ash were also higher than that of MSWI fly ash. The results indicated that washed MSWI fly ash can reduce the emission of metallic chlorides during its subsequent melting treatment.  相似文献   

6.
In order to reduce secondary pollution during the incineration of composite refuse derived fuel (CRDF), the combustion features and the emission behavior of chlorine in CRDF containing coal were analyzed. The former was analyzed using thermo-gravimetric and the latter by gas chromatography–mass spectrometry. The release rate of inorganic chlorine during combustion reached 90 mass% at temperature between 773.15 and 873.15 K. On the other hand, approximately 84 mass% release rates was resulting from pyrolysis at 723.15 K. When temperature reached above 1073.15 K, it was noticed that higher concentration of organic chlorine in different organic compounds were produced in the processing of pyrolysis compared with those released from the combustion processing. From the thermo-gravimetric analysis using a self-designed system, three distinct phases were detected in the thermal process of CRDF. The first phase occurred at temperature between 473 and 573 K and its mass loss was about 38.50%. The second phase between temperature regions of 673–773 K with a mass loss of 20.35%. The third phase was observed at the temperature between 873 and 1073 K with 22.25% mass loss.  相似文献   

7.
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na2SiO3) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na2SiO3/NaOH of 1.5 and curing temperature of 65 °C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0–44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.  相似文献   

8.
After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 103 times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.  相似文献   

9.
The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG–MS) analysis of the gaseous thermal decomposition products. Results of TG–MS analysis on RDF-I BA indicated that the LOI measured at 550 °C was due to moisture evaporation and dehydration of Ca(OH)2 and hydrocalumite. Results for the HW-I BA showed that LOI at 550 °C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO3 around 700 °C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO3 contents of the HW-I BA during TG–MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)2 in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650 °C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.  相似文献   

10.
In this study, dry sewage sludge (DSS) as the principal material was blended with coal ash (CA) to produce lightweight aggregate. The effects of different raw material compositions and sintering temperatures on the aggregate properties were then evaluated. In addition, an environmental assessment of the lightweight aggregate generated was conducted by analyzing the fixed rate of heavy metals in the aggregate, as well as their leaching behavior. The results indicated that using DSS enhanced the pyrolysis–volatilization reaction due to its high organic matter content, and decreased the bulk density and sintering temperature. However, the sintered products of un-amended DSS were porous and loose due to the formation of large pores during sintering. Adding CA improved the sintering temperature while effectively decreasing the pore size and increasing the compressive strength of the product. Furthermore, the sintering temperature and the proportion of CA were found to be the primary factors affecting the properties of the sintered products, and the addition of 18–25% of CA coupled with sintering at 1100 °C for 30 min produced the highest quality lightweight aggregates. In addition, heavy metals were fixed inside products generated under these conditions and the As, Pb, Cd, Cr, Ni, Cu, and Zn concentrations of the leachate were found to be within the limits of China’s regulatory requirements.  相似文献   

11.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

12.
The manufacture of prefabricated building materials containing binding products such as ettringite (6CaO·Al2O3·3SO3·32H2O) and calcium silicate hydrate (CSH) can give, in addition to other well-defined industrial activities, the opportunity of using wastes and by-products as raw materials, thus contributing to further saving of natural resources and protection of the environment.Two ternary mixtures, composed by 40% flue gas desulfurization (FGD) gypsum or natural gypsum (as a reference material), 35% calcium hydroxide and 25% coal fly ash, were submitted to laboratory hydrothermal treatments carried out within time and temperature ranges of 2 h–7 days and 55–85 °C, respectively. The formation of (i) ettringite, by hydration of calcium sulfate given by FGD or natural gypsum, alumina of fly ash and part of calcium hydroxide, and (ii) CSH, by hydration of silica contained in fly ash and residual lime, was observed within both the reacting systems. For the FGD gypsum-based mixture, the conversion toward ettringite and CSH was highest at 70 °C and increased with curing time. Some discrepancies in the hydration behavior between the mixtures were ascribed to differences in mineralogical composition between natural and FGD gypsum.  相似文献   

13.
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.  相似文献   

14.
A field and laboratory geotechnical characterization study of a Municipal Solid Waste Incineration Ash disposed of at the Carleton Farms monofill in Michigan was performed. Field characterization consisted of field observations, collection of four bulk samples and performance of shear wave velocity measurements at two locations. Laboratory characterization consisted of basic geotechnical characterization, i.e., grain size distribution, Atterberg limits, specific gravity tests, compaction tests as well as moisture and organic content assessment followed by direct shear and triaxial shear testing. The test results of this investigation are compared to results in the literature. The grain size distribution of the samples was found to be very similar and consistent with the grain size distribution data available in the literature, but the compaction characteristics were found to vary significantly. Specific gravities were also lower than specific gravities of silicic soils. Shear strengths were higher than typically reported for sandy soils, even for MSWI ash specimens at a loose state. Strain rate was not found to impact the shear resistance. Significant differences in triaxial shear were observed between a dry and a saturated specimen not only in terms of peak shear resistance, but also in terms of stress–strain response. In situ shear wave velocities ranged from 500 to 800 m/s at a depth of about 8 m, to 1100–1200 m/s at a depth of 50 m. These high shear wave velocities are consistent with field observations indicating the formation of cemented blocks of ash with time, but this “ageing” process in MSWI ash is still not well understood and additional research is needed. An improved understanding of the long-term behavior of MSWI ash, including the effects of moisture and ash chemical composition on the ageing process, as well as the leaching characteristics of the material, may promote unbound utilization of the ash in civil infrastructure.  相似文献   

15.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

16.
In this work the feasibility of using woody agricultural biomass wastes as grapes and cherries seeds, sawdust, as pore forming agent, and sugar cane ash, as silica precursor, in bricks, were reported.Sawdust and grapes and cherries seeds, thanks to their organic substances content, during their combustion, bring an energetic support in the bricks firing phase and act as pore forming agent. Usually the addition of this kind of waste is limited to 10 wt.% in order to reach an equilibrium between positive (weight and shrinkage decrease and porosity increase) and negative (increase of water absorption and mechanical resistance decrease) effects. The results show that grapes and cherries seeds, added in a percentage of 5 wt.% to a brick formulation, have better influence with respect to the sawdust, maintaining the mechanical properties of the fired brick (950 °C), showing modulus of rupture around 21–23 MPa with a weight reduction of 3–10% (respect to the standard one). Regarding the sugar cane ash, the addition of 5 wt.% improves the mechanical properties (modulus of rupture around 27 MPa) and no weight decrease is observed. These results confirmed the role played by this kind of agricultural waste, which thanks to its high silica content (61 wt.%) is capable to demonstrate a filler and plasticity reducing effect on the brick bodies. Tests carried out highlighted that the addition of these by-products (5 wt.%) do not change negatively the main technological properties measured (water absorption, linear shrinkage, flexural resistance, etc.) and permit to hypothesize their use to obtain bricks with both insulating and higher mechanical properties using a pore agent forming or silica carrier alternative raw materials, respectively.  相似文献   

17.
This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9–1.2 g cm?3 and 50–60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m?1 K?1. Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.  相似文献   

18.
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.  相似文献   

19.
Brazil is the largest worldwide producer of alcohol and sugar from sugar-cane and has an extensive alternative program for car fuel which is unique. The objective of this work is to offer one management option of a solid residue produced by this industrial segment. The pressed sugar-cane bagasse is burned to produce steam and electricity by cogeneration. The combustion yields both bottom and fly ashes which contain high amounts of silicon oxide as a major component. Fly ash which contains a high volume (>30% by weight) of charcoal was used in this work. The ash was sieved to separate the thick charcoal from inorganic materials which are concentrated in the thinner fraction. The briquettes were hand pressed using charcoal mixed with a binder (starch) obtained from cassava flour (a tropical root). The results (density, mechanical resistance) obtained with 8% by weight of starch binder are presented here. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to characterize the ashes and the briquettes. The results show that sugar-cane bagasse fly ash (SCBFA) can be used to produce briquettes with an average density of 1.12 g cm?3 and an average calorific value of 25,551 kJ/kg.  相似文献   

20.
In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g?1. Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha?1 corresponding to 91 mg P kg?1 soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h?1), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na2HPO4). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na2HPO4 (97% and 12% of total P applied in Jyndevad and sand, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号