首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other western European countries as well.  相似文献   

2.
The objective of this study was to predict the number of refrigerators containing CFC-11 blown isolation foam and the amount of CFC-11 banked in these refrigerators. By using a Weibull-based survival function, the number of CFC-11 containing and still-functioning refrigerators was estimated to be approximately 1.6 million in 2013 in Turkey. In order to determine the amount of CFC-11 in the isolation foam of these refrigerators, polyurethane (PU) foam samples were taken from a refrigerator manufactured in 1993 and the quantity of CFC-11 was analyzed by a GC-MS. It was determined that 113–195 mg CFC-11/g PU remains in the PU foam depending on the location such as door, sides, top and bottom. Knowing that a mid-sized refrigerator contains 4 kg PU on average, the total amount of PU foam to be disposed of is 6344 tons when the CFC-11 containing refrigerators in Turkey become obsolete in the near future. Furthermore, 717–1237 tons of CFC-11 are expected to be banked in the PU foam of these refrigerators which will exert an equivalent amount of ozone depleting potential (ODP). In addition, the global warming potential will vary between 3.4 and 5.9 million tons of CO2.  相似文献   

3.
The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0 tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552 tonnes/yr, consisting of three types of RDF: 116,083 tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621 tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848 tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000 × 106 kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.  相似文献   

4.
Use and disposal of large home electronic appliances in Vietnam   总被引:1,自引:1,他引:0  
In this study, e-waste flows of five large home appliances (color televisions, refrigerators, washing machines, personal computers, and air conditioners) in Vietnam are investigated. A social survey was performed to investigate the situation on using appliances in households as well as on the disposal of appliances by the first users. Future quantities of e-waste were estimated using a model that combines use of the Weibull distribution, the logistic function, and the population balance model. It was forecast that about 3.86 million appliances, or 114 000 tons, will be discarded in 2010, and about 17.2 million appliances, or 567 000 tons, in 2025, showing a rapid increase of e-waste in the near future.  相似文献   

5.
Worldwide, the amount of end-of-life vehicles (ELVs) reaches 50 million units per year. Once the ELV has been processed, it may then be shredded and sorted to recover valuable metals that are recycled in iron and steelmaking processes. The residual fraction, called automotive shredder residue (ASR), represents 25% of the ELV and is usually landfilled. In order to deal with the leachable fraction of ASR that poses a potential threat to the environment, a washing treatment before landfilling was applied. To assess the potential for full-scale application of washing treatment, tests were carried out in different conditions (L/S = 3 and 5 L/kgTS; t = 3 and 6 h). Moreover, to understand whether the grain size of waste could affect the washing efficiency, the treatment was applied to ground (<4 mm) and not-ground samples. The findings obtained revealed that, on average, washing treatment achieved removal rates of more than 60% for dissolved organic carbon (DOC), chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN). With regard to metals and chlorides, sulphates and fluoride leachable fraction, a removal efficiency of approximately 60% was obtained, as confirmed also by EC values. The comparison between the results for ground and not-ground samples did not highlight significant differences.  相似文献   

6.
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007–2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.  相似文献   

7.
The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.  相似文献   

8.
WEEE flow and mitigating measures in China   总被引:4,自引:0,他引:4  
The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.  相似文献   

9.
The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.  相似文献   

10.
Optimal biogas production and sludge treatment were studied by co-digestion experiments and modeling using five different wastewater sludges generated from paper, chemical, petrochemical, automobile, and food processing industries situated in Ulsan Industrial Complex, Ulsan, South Korea. The biomethane production potential test was conducted in simplex-centroid mixture design, fitted to regression equation, and some optimal co-digestion scenarios were given by combined desirability function based multi-objective optimization technique for both methane yield and the quantity of sludge digested. The co-digestion model incorporating main and interaction effects among sludges were utilized to predict the maximum possible methane yield. The optimization routine for methane production with different industrial sludges in batches were repeated with the left-over sludge of earlier cycle, till all sludges have been completely treated. Among the possible scenarios, a maximum methane yield of 1161.53 m3 is anticipated in three batches followed by 1130.33 m3 and 1045.65 m3 in five and two batches, respectively. This study shows a scientific approach to find a practical solution to utilize diverse industrial sludges in both treatment and biogas production perspectives.  相似文献   

11.
In Korea, generation of waste electrical and electronic equipment (WEEE), or electronic waste (e-waste), has rapidly increased in recent years. The management of WEEE has become a major issue of concern for solid waste communities due to the volumes of waste being generated and the potential environmental impacts associated with the toxic chemicals found in most electronic devices. Special attention must be paid when dealing with WEEE because of toxic materials that it contains (e.g., heavy metals, polybrominated diphenyl ethers, phthalates, and polyvinyl chloride). If managed improperly, the disposal of WEEE can adversely affect the environment and human health. Environmental regulatory agencies; electronic equipment manufacturers, retailers, and recyclers; environmental nongovernmental organizations; and many others are much interested in updated statistics with regard to how much WEEE is generated, stored, recycled, and disposed of. In Korea, an extended producer responsibility policy was introduced in 2003 not only to reduce the amount of electronic products requiring disposal, but also to promote resource recovery from WEEE; the policy currently applies to a total of ten electrical and electronic product categories. This article presents an overview of the current recycling practices and management of electrical and electronic waste in Korea. Specifically, the generation rates, recycling systems and processes, and recent regulations of WEEE are discussed. We estimated that 1 263 000 refrigerators, 701 000 washing machines, 1 181 000 televisions, and 109 000 airconditioning units were retired and handled by the WEEE management system in 2006. More than 40% of the products were collected and recycled by producers. Four major producers’ recycling centers and other WEEE recycling facilities are currently in operation, and these process a large faction of WEEE for the recovery of valuable materials. Much attention should still be paid to pollution prevention and resource conservation with respect to WEEE. Several suggestions are made in order to deal with electronic waste management problems effectively and to prevent potential impacts.  相似文献   

12.
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated.Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs.The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1 mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products.  相似文献   

13.
Mixtures of organic and inorganic wastes were incubated to examine the changes in organic C (OC) contents. An anaerobic sludge and a CaO-treated aerobic sludge, with OC concentrations of 235 and 129 g kg?1, were used. The inorganic wastes used – referred to as “conditioners” – were shot blasting scrap, fettling, Linz-Donawitz slag, foundry sand (FS), and fly ash from wood bark combustion (FA). The total OC (TOC) and KMnO4? oxidized OC were determined. DTA-TGA profiles and FTIR spectra were also obtained. Mixtures made with the FS contained significantly lower (P < 0.05) amounts of TOC (45 g kg?1) than the rest of mixtures, which was attributed to the non-existence of reactive surfaces in the conditioner and the increased aeration induced by this material. Those made with FA contained significantly higher (P < 0.05) amounts of TOC (170 g kg?1), which was attributed to: (i) the addition of an extra source of C – black carbon (BC) – in the FA, and (ii) the inhibition of mineralization from the compounds present in this conditioner (e.g., amorphous aluminosilicates, BC). The results highlight the importance of the characteristics of the conditioners on the fate of the OM originating from the sludges.  相似文献   

14.
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d?1), 54.6% of total recyclable wastes (51.49 ton d?1) and 68.29% of readily recyclable wastes (41.19 ton d?1). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.  相似文献   

15.
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories – urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union’s solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.  相似文献   

16.
The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation–flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD.  相似文献   

17.
This study presents and analyzes the data of the Italian system for take-back and recovery of waste electrical and electronic equipments (WEEEs) in the start-up period 2008–2010. The analysis was focused particularly on the data about the treatment of end-of-life cooling and freezing equipments. In fact, the wastes of cooling and freezing equipments have a high environmental impact. Indeed, in their compressor oil and insulation polyurethane (PU) foams chlorofluorocarbon (CFC) ozone-depleting gases are still present. In the period 2001–2004 Northern Italy resulted the main source in Europe of CFCs. The European Directive on WEEE management was enacted in 2002, but in Italy it was implemented by the legislative Decree in 2005 and it became operational in 2008. Actually, in 2008 the national WEEE Coordination Centre was founded in order to organize the WEEE pick-up process and to control collection, recovery and recycling targets. As a result, in 2010 the average WEEE collection per capita exceeded the threshold of more than 4 kg per inhabitant, as well as cooling and freezing appliances represented more than one fourth of the Italian WEEE collection stream. During the treatment of end-of-life cooling and freezing equipments, CFCs were recovered and disposed principally by burner methods. The analyses of defined specimens collected in the treatment facilities were standardized to reliably determine the amount of recovered CFCs. Samples of alkaline solid salt, alkaline saline solution, polyurethane matrix and compressor oil collected during the audit assessment procedure were analyzed and the results were discussed. In particular, the analysis of PU samples after the shredding and the warm pressing procedures measured a residual CFCs content around 500–1300 mg/kg of CFCs within the foam matrix.  相似文献   

18.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

19.
The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.  相似文献   

20.
A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号