共查询到20条相似文献,搜索用时 0 毫秒
1.
The concentrations of 41 phenols in leachates from 38 municipal solid waste (MSW) landfill sites in Japan were measured. The
main phenols detected in leachates were phenol, three cresols, 4-tert-butylphenol, 4-tertoctylphenol, 4-nonylphenol, bisphenol
A, and some chlorophenols. The concentration levels of phenols were affected by the pH values of the leachates and the different
types of landfill waste. The origins of phenol and p-cresol were considered to be incineration residues, and the major origin of 4-tert-butylphenol, bisphenol A, and 2,4,6-trichlorophenol
was considered to be solidified fly ash. In contrast, the major origins of 4-tert-octylphenol and 4-nonylphenol were considered
to be incombustibles. The discharge of leachates to the environment around MSW landfill sites without water treatment facilities
can cause environmental pollution by phenols. In particular, the disposal of incineration residues including solidified fly
ash and the codisposal of solidified fly ash and incombustibles might raise the possibility of environmental pollution. Moreover,
the discharge of leachates at pH values of 9.8 or more could pollute the water environment with phenol. However, phenol, 4-nonylphenol,
and bisphenol A can be removed to below the con centration levels that impact the environment around landfill sites by a series
of conventional water treatment processes. 相似文献
2.
S. Masi D. Caniani E. Grieco D.S. Lioi I.M. Mancini 《Waste management (New York, N.Y.)》2014,34(3):702-710
The present study addresses the theme of recycling potential of old open dumpsites by using landfill mining. Attention is focused on the possible reuse of the residual finer fraction (<4 mm), which constitutes more than 60% of the total mined material, sampled in the old open dumpsite of Lavello (Southern Italy). We propose a protocol of analysis of the landfill material that links chemical analyses and environmental bioassays. This protocol is used to evaluate the compatibility of the residual matrix for the disposal in temporary storages and the formation of “bio-soils” to be used in geo-environmental applications, such as the construction of barrier layers of landfills, or in environmental remediation activities. Attention is mainly focused on the presence of heavy metals and on the possible interaction with test organisms. Chemical analyses of the residual matrix and leaching tests showed that the concentration of heavy metals is always below the legislation limits. Biological acute tests (with Lepidum sativum, Vicia faba and Lactuca sativa) do not emphasize adverse effects to the growth of the plant species, except the bioassay with V. faba, which showed a dose–response effect. The new developed chronic bioassay test with Spartium junceum showed a good adaptation to stress conditions induced by the presence of the mined landfill material. In conclusion, the conducted experimental activities demonstrated the suitability of the material to be used for different purposes. 相似文献
3.
Nobutoshi Tanaka Yasumasa Tojo Toshihiko Matsuto 《Journal of Material Cycles and Waste Management》2005,7(2):104-111
This article focuses on the historical development of landfill technology since the beginning of the nineteenth century in Japan. The regulations and guidelines that form a framework for the technology are reviewed, and the historical background and the current state of Japanese municipal solid waste (MSW) management are described. Through the analysis of data collected from facility leaflets, changes in the leachate treatment system are surveyed. Finally, the concept of the “sustainable bioreactor landfill with low organics” is proposed. 相似文献
4.
Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China 总被引:4,自引:0,他引:4
Ying D Chuanyu C Bin H Yueen X Xuejuan Z Yingxu C Weixiang W 《Waste management (New York, N.Y.)》2012,32(2):317-326
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH3 and H2S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H2S (56.58-579.84 μg/m3) and NH3 (520-4460 μg/m3) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H2S and NH3 concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. 相似文献
5.
Zihong Xia Jian Li Tingting Wu Caixia Chen Xiaoke Zhang 《Waste management (New York, N.Y.)》2014,34(9):1609-1618
A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and the selective non-catalytic reduction (SNCR) process between urea (CO(NH2)2) and NOx. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NOx concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NOx reduction and reasonable NH3 slip rates. This work provided useful guides to the design and operation of SNCR process in moving-grate incinerators. 相似文献
6.
The current situation of solid waste management in China 总被引:1,自引:1,他引:1
Qifei Huang Qi Wang Lu Dong Beidou Xi Binyan Zhou 《Journal of Material Cycles and Waste Management》2006,8(1):63-69
With economic development, the quantity of solid waste is increasing rapidly in China; the total quantities of municipal solid
waste (MSW), industrial solid waste (ISW), and hazardous waste (HW) in 2002 were 136.5 million tons, 945 million tons, and
10 million tons, respectively. In 2002, the quantity of MSW disposed of was 74.04 million tons, 89.30% of which was landfilled,
3.72% was incinerated, and 6.98% was composted. There are currently 651 disposal facilities for MSW in China. Mining gangue
is the largest component of ISW, making up 27.5% of the total. In the Chinese industrial sector, the coal mining and processing
industry contributed most to the total quantity of ISW, with 16.0% of the total quantity of ISW generated by this sector.
In total, 44% of HW was recycled, 27% was stored, 13.5% was disposed of, and 15.4% was discharged. Of the total HW generated,
40% was produced by the chemical materials and chemical products industry. Five categories of HW, i.e., waste alkali, waste
acid, inorganic fluoride waste, copper waste, and inorganic cyanide waste, made up 57.8% of the total HW generated. Solid
waste pollution has become a huge challenge faced by those involved in Chinese environmental management, but this can be seen
as an opportunity to improve environmental quality. This article introduces the strategies taken to improve solid waste management
in China. 相似文献
7.
In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates. 相似文献
8.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources. 相似文献
9.
Degradation of municipal solid waste in landfills generates sulfide compounds, which are considered one of the main sources of odor emissions. Field sampling was conducted at surfaces of operating, inoperative, and soil-covered areas of a landfill site in northern China to characterize the sulfide compounds. The results showed that dimethyl disulfide dominated the sulfide compounds, accounting for up to 73.6% of the total detected sulfide. With the biggest odor concentration of 365, diethyl sulfide was the most significant sulfide compound. The estimated sulfide emission rates at surfaces of operating and soil-covered areas were similar, and the emission rate of dimethyl disulfide at Surface of Operating Area was up to 345.9 μg/m3 h. Dimethyl disulfide could be released from the fresh waste, and its normalized concentration at 0.2 m beneath operating surface was 10.4 times that at 0.4 m. 相似文献
10.
Using first-order kinetic empirical models to estimate landfill gas (LFG) generation and collection rates is well recognized in the literature. The uncertainty in the estimated LFG generation rates is a major challenge in evaluating performance of LFG collection and LFG to energy facilities. In this investigation, four methods for quantifying first-order LFG generation model parameters, methane generation potential, L0, and methane generation rate constant, k, were evaluated. It was found that the model is insensitive to the approach taken in quantifying the parameters. However, considering the recognition of using the model in the literature, the optimum method to estimate L0 and k is to determine L0 using disposed municipal solid waste composition and laboratory component specific methane potential values. The k value can be selected by model fitting and regression using the first-order model if LFG collection data are available. When such data are not available, k can be selected from technical literature, based on site conditions. For five Florida case-study landfills L0 varied from 56 to 77 m3 Mg−1, and k varied from 0.04 to 0.13 yr−1 for the traditional landfills and was 0.10 yr−1 for the wet cell. Model predictions of LFG collection rates were on average lower than actual collection. The uncertainty (coefficient of variation) in modeled LFG generation rates varied from ±11% to ±17% while landfills were open, ±9% to ±18% at the end of waste placement, and ±16% to ±203% 50 years after waste placement ended. 相似文献
11.
This article presents a review of the current municipal solid waste (MSW) and domestic waste generation and recovery situation
in Hong Kong and identifies the factors affecting the waste generation rates. The results show that before 1997, MSW and domestic
waste generation rates were driven by population growth and growth in the gross domestic product, with the latter having the
larger effect. But recent waste generation data show poor correlation between waste generation rates and economic and population
figures due to the increase in recycling efforts in the community. The results are also reported of a small-scale survey to
explore the public attitude to waste recovery. The results show that most domestic householders have developed habits to carry
out separation of waste at source for recycling, but the amount of recyclables recovered was low. 相似文献
12.
Ana María Plata-Díaz José Luis Zafra-Gómez Gemma Pérez-López Antonio Manuel López-Hernández 《Waste management (New York, N.Y.)》2014,34(11):1967-1976
Identifying and characterising the factors that determine why a local authority opts for a particular way of managing its waste collection service is an important issue, warranting research interest in the field of municipal solid waste (MSW) management. This paper presents empirical evidence spanning a broad time horizon (2002–2010) showing that economic and political factors impact in different ways on the provision of waste management services. We examine five alternatives in this area, including public and private service delivery formulas and, within each field, individual and joint options. Our findings highlight the importance of the service cost and that of the various indicators of fiscal stress as determinant factors of management decisions regarding the provision of MSW management services. 相似文献
13.
Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age 总被引:1,自引:0,他引:1
Successful modeling of liquid and air flow and hence designing of liquid and air addition systems in the landfills are constrained by the lack of key parameters of unsaturated hydraulic properties of municipal solid waste (MSW), which are strongly dependent on the depth of burial and the degree of decomposition. In this study, water retention curves (WRC) of MSW are measured using pressure plate method on samples repacked according to the in situ unit weight measured during borehole sampling, representing the MSW in shallow, middle, and deep layers. The measured WRC of MSW is well-reproduced by the van Genuchten-Mualem model, and is used to predict the unsaturated hydraulic properties of MSW, including water retention characteristics and unsaturated hydraulic conductivity. The estimated model parameters are consistent with other studies, suggesting that the pressure plate method yields reproducible results. As the landfill depth and age increase, the overburden pressure, the highly decomposed organic matter and finer pore space increase, hence the capillary pressure increases, causing increases in air-entry values, field capacity and residual water content, and decreases in steepness of WRC and saturated water content. The unsaturated hydraulic properties of MSW undergo changes with landfill depth and age, showing more silt loam-like properties as the landfill age increases. 相似文献
14.
Yu-Chi Weng Takeshi Fujiwara Yuzuru Matsuoka 《Journal of Material Cycles and Waste Management》2009,11(2):110-122
Industrialization and urbanization result in significant changes in lifestyle. These lifestyle changes seem to lead to unsustainable
consumption patterns and increase the generation of various kinds of environmental loads, especially the amount of municipal
solid waste (MSW). Taiwan is a small island with scarce natural resources. The economic development in Taiwan has resulted
in the generation of large amounts of MSW. As a result, the Taiwan Environmental Pollution Administration (TEPA) has produced
regulations for waste minimization and has imposed several important policy measures that have successfully reduced the MSW
discard rate in recent years and have established a public recycling network as a part of the MSW collection. Nowadays, the
objective of the MSW policies in Taiwan is to develop a “zero-waste society.” This article aims to review the MSW management
progress in Taiwan and to project future MSW discards up to 2011 based on the national plan and assumed scenarios for socioeconomic
variables. According to the analysis results, a more sustainable consumption pattern can be proposed and the corresponding
MSW management system can be planned so as to develop a low-waste-discard society. 相似文献
15.
J.D. Nixon D.G. Wright P.K. Dey S.K. Ghosh P.A. Davies 《Waste management (New York, N.Y.)》2013,33(11):2234-2244
The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. 相似文献
16.
Susumu Shimura Isamu Yokota Yoshitaka Nitta 《Journal of Material Cycles and Waste Management》2001,3(1):48-59
Developing nations have various problems regarding municipal solid waste (MSW). Therefore, to carry out a systematic review of the MSW problems in the target area and to formulate a well-considered management plan, it is extremely important to understand the present MSW flow in the region. One of the authors participated in the nine solid waste management (SWM) studies in developing nations undertaken under the technical cooperation program of the Japan International Cooperation Agency (JICA). Based on these studies, this paper reviews the results of research in developing countries regarding different MSW streams, the factors that cause the differences, and the elements considered to have the most impact on those streams. This research identifies several issues regarding MSW streams in developing nations. The MSW generation rate per capita in developing countries is generally said to grow in proportion to the GNP. However, the findings of this research show no correlation between the two; instead, there is a relationship between the GNP and the collection rate. To formulate proper future MSW management plans in countries with low collection rates, it is very important to forecast the rates of self-disposed and recycled waste, and their fluctuations. These are affected by urban structure, collection services, etc. Received: January 27, 2000 / Accepted: July 19, 2000 相似文献
17.
Fabrizio Passarini Monica Nicoletti Luca Ciacci Ivano Vassura Luciano Morselli 《Waste management (New York, N.Y.)》2014,34(4):753-762
The study focuses on analysing the evolution of environmental impacts caused by a medium–large Italian WtE plant before and after revamping and maintenance operations, with the aim of providing an evaluation of how much these structural upgrade measures may affect the total environmental performance.LCA methodology was applied for the modelling and comparison of six WtE scenarios, each describing the main structural upgrades carried out in the plant over the years 1996–2011. The comparison was conducted by adopting 1 ton of MSW as the functional unit, and the net contribution from energy recovery to power generation was distinguished by defining consistent national grid electricity mixes for every year considered. The Ecoindicator99 2.09 impact assessment method was used to evaluate the contribution to midpoint and endpoint categories (e.g. carcinogens, respiratory inorganics and organics, climate change, damage to human health). Lastly, the “Pedigree quality matrix” was applied to verify the reliability and robustness of the model created.As expected, the results showed better environmental scores after both the implementation of new procedures and the integration of operations. However, while a net reduction of air emissions seems to be achievable through dedicated flue gas treatment technologies, outcomes underscored potentials for improving the management of bottom ash through the adoption of alternative options aimed to use that solid residue mainly as filler, and to decrease risks from its current disposal in landfill. If the same effort that is put into flue gas treatment were devoted to energy recovery, the targets for the WtE plant could be easily met, achieving a higher sustainability. This aspect is even more complex: national policies for implementing greener and renewable energy sources would result in a lower impact of the national energy mix and, hence, in a lower net avoided burden from energy recovery.The study confirmed the expected improvements, indicating quantitatively the lower environmental impact resulting from structural upgrade operations in a WtE plant. Furthermore, the work highlights the importance of considering the evolution of the national energy mix in LCA studies, especially during the present years of transition from fossil fuels to renewable sources. 相似文献
18.
Some minimum design requirements for landfill liner systems were compared, and the performance of several Japanese liner
systems was investigated by two-dimensional (2D) contaminant transport analysis. We demonstrate that (1) the performance of
each system specified by the Japanese Ministry of Health and Welfare (at present the Ministry of Health, Labor, and Welfare)
varies, (2) the adsorption characteristics of the mineral barrier has a significant effect on the contaminant transport process,
and (3) a geomembrane layer in the barrier system is very efficient in reducing the peak concentration of contaminants in
the groundwater beneath a landfill even if the geomembrane has a number of defects. Under the conditions considered, the analysis
results show that a liner system without a geomembrane layer should be avoided.
Received: July 4, 2001 / Accepted: March 26, 2002 相似文献
19.
Hua Zhang Pin-Jing He Li-Ming Shao Xin-Jie Li 《Journal of Material Cycles and Waste Management》2008,10(1):7-13
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention
has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including
extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr,
Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships
between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software
were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering
precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide).
The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb,
and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching
of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results.
Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission
Control (i-CIPEC) 相似文献
20.
Ya-nan Wang Ying-jie Sun Lei Wang Xiao-jie Sun Hao Wu Rong-xing Bian Jing-jing Li 《Waste management (New York, N.Y.)》2014,34(11):2209-2217
A combined process comprised of ex-situ nitrification in an aged refuse bioreactor (designated as A bioreactor) and in-situ denitrification in a fresh refuse bioreactor (designated as F bioreactor) was constructed for investigating N2O emission during the stabilization of municipal solid waste (MSW). The results showed that N2O concentration in the F bioreactor varied from undetectable to about 130 ppm, while it was much higher in the A bioreactor with the concentration varying from undetectable to about 900 ppm. The greatly differences of continuous monitoring of N2O emission after leachate cross recirculation in each period were primarily attributed to the stabilization degree of MSW. Moreover, the variation of N2O concentration was closely related to the leachate quality in both bioreactors and it was mainly affected by the COD and COD/TN ratio of leachate from the F bioreactor, as well as the DO, ORP, and NO3?-N of leachate from the A bioreactor. 相似文献