首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微藻生物质能源被认为是可以有效解决能源危机的第三代生物质能源。以微藻为原料,通过热化学转化的方法制取生物质油是微藻能源利用的研究热点。综述了微藻热化学转化中催化剂的研究进展,包括碱金属盐催化剂、分子筛催化剂、过渡金属催化剂等,并提出了该研究的发展方向。  相似文献   

2.
Biodiesel production is mainly done by carrying on the transesterification reaction while using refined oil, methanol and a homogeneous base catalyst. When using refined oil, a competition between oil for food and oil for fuel is then presented. Even more, the conventional technology has the disadvantage that the raw material has to be very pure, with no traces of other impurities. Otherwise, undesirable products will be produced decreasing the productivity of the process and making a large amount of waste treatment.Because of this, other technologies appear as possible sources for biodiesel production, mainly from refined oil, but also allowing less pure raw material to be used, such as waste oil, frying oil, soapstocks, and animal fats.In this work, a comparison of all these different raw materials, their physicochemical properties and how they can have an influence, and the magnitude of this phenomenon, in the biodiesel production will be presented and compared. Based on the previous analysis, a short summary of the technological possibilities to produce good quality biodiesel from low price raw material will be discussed with the aim of showing their advantages and disadvantages when using different feedstocks.  相似文献   

3.
Biodiesel as an alternative fuel for fossil diesel has many benefits such as reducing regulated air pollutants emissions, reducing greenhouse gases emissions, being renewable, biodegradable and non-toxic. In this study, used frying oil was applied as a low cost feedstock for biodiesel production by alkali-catalyzed transesterification. The design of experiments was performed using a double 5-level-4-factor central composite design coupled with response surface methodology in order to study the effect of factors on the yield of biodiesel and optimizing the reaction conditions. The factors studied were: reaction temperature, molar ratio of methanol to oil, catalyst concentration, reaction time and catalyst type (NaOH and KOH). A quadratic model was suggested for the prediction of the ester yield. The p-value for the model fell below 0.01 (F-value of 27.55). Also, the R2 value of the model was 0.8831 which indicates the acceptable accuracy of the model. The optimum conditions were obtained as follows: reaction temperature of 65 °C, methanol to oil molar ratio of 9, NaOH concentration of 0.72% w/w, reaction time of 45 min and NaOH as the more effective catalyst. In these conditions the predicted and observed ester yields were 93.56% and 92.05%, respectively, which experimentally verified the accuracy of the model. The fuel properties of the biodiesel produced under optimum conditions, including density, kinetic viscosity, flash point, cloud and pour points were measured according to ASTM standard methods and found to be within specifications of EN 14214 and ASTM 6751 biodiesel standards.  相似文献   

4.
Integration of a human-machine interface (HMI) with hazard and operability (HAZOP) analysis is proposed in this work. This concept can potentially lead to the identification of some unexpected deviations, and radically decreases the time necessary for hazard identification. A continuous biodiesel production was simulated. This can be divided into two cases, covering both conventional and reactive distillation. Soybean oil (trioleic, trilinoleic and tripalmitic) at 1000 kg/h as raw material is converted to 99 wt% pure biodiesel. The HMI was designed to improve these processes by combining automatic HAZOP analysis. With this approach, users can receive sufficient information from the simulation to analyze the optimum operation and safety. Severity levels are also provided to classify the actions in the process. Severity levels 1 and 2 are concerned with operating conditions, which are 58-64 °C, and 50-150 kPa. If the analysis shows severity level 3, the safety instrumented system (SIS) will automatically manage the operation in order to reduce/restrain the amount of damage at this level. This proposed system could minimize the damage and also improve the overall quality of the process.  相似文献   

5.
In this research, transesterification of the waste cooking oil has been studied. Response surface methodology (RSM) based on Box–Behnken design was used to investigate the effects of the main operating parameters, including the methanol to oil molar ratio, catalyst concentration, and reaction temperature, on the biodiesel yield. The results revealed that the catalyst concentration is the most important parameter. The maximum biodiesel yield under the optimized conditions was 99.38 wt.%. Thermogravimetric analysis (TGA) was used for the determination of biodiesel conversion and the results were compared with that of gas chromatography (GC) analysis, showing a very small difference. Furthermore, an empirical quadratic equation has been presented to show the relation between biodiesel conversion and product viscosity.  相似文献   

6.
Owing to concerns about energy security and because of increased environmental awareness, the biofuel industry is expanding worldwide. It is therefore extremely important to be able to quantify the sustainability of biofuels in order to determine their benefits over using conventional fossil fuel derived transport fuels. This study investigates the total energy requirement and global warming potential (GWP) of the production of biodiesel from oilseed rape in the UK, using life cycle analyses. Large- and small-scale productions are compared and the sensitivity of these environmental impacts to production variables investigated. Possible changes to the processes are considered, with a view to reduce the energy requirement and global warming potential.This research shows that the scale of the production of biodiesel from oilseed rape in the UK, and the transport involved in the various stages of manufacture, has little effect on its global warming potential. It is also shown that if the rape meal and glycerol were combusted in combined heat and power plants, and the rate of application of nitrogenous fertiliser were reduced from 211 kg/ha to 100 kg/ha, the energy requirement and global warming potential savings from using biodiesel rather than ultra low sulphur diesel would increase dramatically, to 170% and 120%, respectively, on a basis of equivalent net energy content.  相似文献   

7.
Production equipment designers must ensure the health and safety of future users; in this regard, they augment requirements for standardizing and controlling operator work. This contrasts with the ergonomic view of the activity, which recommends leaving operators leeway (margins for manoeuvre) in performing their task, while safeguarding their health. Following a brief analysis of design practices in the car industry, we detail how the Failure Modes and Effects Analysis (FMEA) approach is implemented in this sector. We then suggest an adaptation that enables designers to consider real work situations. This new protocol, namely, work situation FMEA, allows experience feedback to be used to defend the health standpoint during designer project reviews, which usually only address quality and performance issues. We subsequently illustrate the advantage of this approach using two examples of work situations at car parts manufacturers: the first from the literature and the second from an in-company industrial project.  相似文献   

8.
针对煤矿安全生产多套监控系统并存的现状,通过将煤矿系统模块化,形成了基于安全信息管理数据库的安全生产协同监控系统.该系统能够以工作场所为单位综合分析各类安全信息,协调各部门的安全生产工作,为其提供参考,同时节约资源,减少操作人员,提高危险源辨识准确性,预测事故并将其消灭在萌芽状态,形成闭环安全管理.  相似文献   

9.
生物柴油是指由植物油、动物油脂等制备得到的单烷烃酯类。它是一种环境友好、清洁排放的燃料,因此是非常理想的石油柴油替代燃料。本文从生物柴油产业链中的原料来源、生产工艺、产品应用以及其效益等方面对这种新型的清洁燃料进行了简单介绍。总之,生物柴油是一种很有发展前景的生物质燃料。  相似文献   

10.
热采井套损机理及套管强度优化设计   总被引:1,自引:0,他引:1  
我国稠油资源丰富,然而稠油热采井套管损坏现象普遍存在,且有越来越严重的趋势,提高热采井套管寿命是稠油开采过程中迫切需要解决的问题。分析了热采井套管损坏主要原因,认为高温引起的强度变化、油层出砂亏空、固井质量差、隔热措施不利及套管本身材质问题都有可能引起热采井套管损坏。采用有限元分析软件ANSYS计算了不同隔热措施、不同注汽温度、不同注汽压力、不同套管材料及壁厚条件下套管应力分布规律。计算结果表明,为减少稠油热采井套管损坏,采用隔热措施较好的油管可以明显降低套管上的等效应力,同时在套管柱设计过程中应优选低弹性模量、厚壁套管。提出了VonMises等效应力对比高温屈服强度的校核新方法,为稠油热采井套管强度设计提供依据。  相似文献   

11.
The search for cheaper feedstock for use in the production of biofuels such as biodiesel has turned attention to various forms of waste products including animal fats, waste oils and now lipids in sludge. With the potential of obtaining sludge at a reduced cost, free, or possibly with incentives, sewage sludge is being investigated as a potential feedstock for biofuel production. For the extraction of oils from the sewage sludge and the subsequent processing, there are various alternatives that should be designed, analyzed, and screened. In developing and screening these alternatives, it is necessary to have a consistent basis for comparing alternatives based on key criteria. While most of the design studies focus on techno-economic criteria, it is also important to include safety metrics in the multi-criteria analysis. In this work, a detailed economic analysis and a safety evaluation are performed on a process involving extraction of triglycerides and fatty acids, pre-treatment of fatty acids (direct conversion to biodiesel), and transesterification of triglycerides to biodiesel. Four solvents, toluene, hexane, methanol and ethanol, are individually used in the extraction process. The resulting triglycerides and fatty acids from each extraction are modeled in the pre-treatment process. ASPEN Plus software is used to simulate the detailed process. Economic analysis is performed using ASPEN ICARUS, and scale-up of a previously analyzed process is used to estimate the cost of the biodiesel portion of the process. A new safety metric (referred to as the Safety Index “SI”) is introduced to enable comparison of the various solvent extraction processes. The SI is based on solvent criteria as well as process conditions. A case study is presented to demonstrate the insights and usefulness of the developed approach. The results of the techno-economic analysis reveal that of the four solvents used for the initial extraction, hexane and toluene were least costly (2.89 and 2.79 $/gal, respectively). Conversely, the safety analysis utilizing the SI reveals that methanol and ethanol are the safer solvent options. The issue of cost/safety tradeoffs is also discussed.  相似文献   

12.
Mixtures of biodiesel, glycerol, and ethanol/methanol are commonly processed and stored in biodiesel production. In this work, non-ideal models are used to calculate the Flash Points (FPs) of binary and ternary mixtures, using data available from different feedstocks. Despite the fact that biodiesel is considered safer than common diesel fuels, results show a synergistic effect of biodiesel/methanol and biodiesel/ethanol mixtures, resulting in a reduction of the flash point of mixtures to values lower than the ones of pure compounds. Most soluble ternary mixtures were found flammable, the only exception being mixtures with a relatively lower alcohol content (45% mol. ethanol or 42% methanol) at temperature lower than 303 K. Accidental increase in temperature can cause domino effect, due to the higher solubility and the formation of new flammable ternary mixtures.  相似文献   

13.
An interaction of a detonation wave propagating in the cellular detonation mode with a cloud of inert particles is investigated numerically. The analysis of results allows the regimes of propagation of the heterogeneous plane Chapman–Jouguet and cellular detonations and their suppression to be identified. The influence of various parameters of the inert cloud is demonstrated. The critical length of the cloud sufficient for detonation suppression is determined. It is shown that the disperse composition and the nonuniform distribution of particles in the cloud are important parameters affecting the detonation propagation mode.  相似文献   

14.
造纸废水的治理研究   总被引:5,自引:0,他引:5  
介绍了造纸废水处理技术的研究现状,讨论了各自的作用机理及其在造纸废水处理中的应用.为工程设计和生产工艺提出了一些有益的建议.在此基础上对造纸废水处理的发展趋势做了分析和展望.  相似文献   

15.
为分析当今反恐新形势下的危险品运输网络优化设计问题的研究现状,系统总结国内外关于一般场景和恐怖袭击威胁2种情况下危险品运输网络优化设计研究的主要模型和方法,梳理两者现有的研究内容,并讨论其共性及恐怖袭击威胁情景下的研究的新特点。结果发现:目前关于解决危险品运输网络优化设计问题模型的鲁棒性研究较为缺乏,尤其是模型在更为复杂和不确定性更强的恐怖袭击情景中适用性不强;危险品运输的鲁棒优化模型即使在突发事件条件下,也可以使决策者能够作出相对满意的决策;鲁棒性危险品运输网络能够规避风险扰动,可用来防止在恐怖袭击中因危险品车辆爆炸等造成更大的危害。  相似文献   

16.
低温NH3-SCR脱硝催化剂研究进展   总被引:8,自引:0,他引:8  
低温NH3-SCR脱除NOx是一种有潜力的烟气脱硝技术.综述了低温NH3-SCR脱硝催化剂的研究现状,重点介绍了锰基催化剂、钒基催化剂,以及其他金属氧化物基催化剂的研究状况,阐述了制备方法、催化剂载体,以及以不同金属改性对催化剂脱硝活性的影响.其中具备高比表面积、良好非晶态结构的低温NH3-SCR催化剂都有良好的低温脱硝活性.以CeO2改性锰(MnOx)基催化剂为例,探讨了低温NH3-SCR脱硝催化剂的脱硝机理.反应气体(NH3、NO和O2)在催化剂表面的吸附在低温NH3-SCR脱除NOx中发挥了重要作用.CeO2改性锰基催化剂催化NH3-SCR反应过程中涉及ER机理和LH机理,并且NH2与气态NO发生反应生成亚硝胺(NH2NO),进一步分解为N2和H2O是关键步骤.就燃煤烟气中水蒸气(H2O)和SO2在低温条件下对低温NH3-SCR脱硝催化剂的失活机制进行了阐述.烟气中的水蒸气与反应气体的竞争性吸附能够导致催化剂脱硝活性的降低.水蒸气(H2O)和SO2共同存在对低温NH3-SCR催化剂脱硝活性的影响表现为两者共同作用.烟气中水和SO2存在时生成的硫酸盐沉积在催化剂表面,并导致催化剂失活.  相似文献   

17.
18.
建筑疏散指示标志关系到人们的生命安全,为了寻找一种更为有效的引导疏散的思路,实现紧急疏散时合理、有效地引导人员逃生,提出了以疏散人员到出口的距离、出口宽度和出口区域人员密度三个因素为基础的出口选择模式作为建筑疏散指示标志的设计规则;研究了仅考虑距离因素选择出口时疏散人员分配失衡的现象,展示了以人员到出口的距离、出口宽度、出口区域人员密度三个因素为基础的出口选择引导模式对建筑疏散的优化效果。研究结果表明:根据距离、出口宽度和出口区域人员密度三个因素来确定疏散指示标志设计的规则,避免了人员密集建筑场所“就近出口”带来的不利因素,实现了疏散资源的高效利用。  相似文献   

19.
美人蕉在镉污染土壤中的植物修复研究   总被引:15,自引:0,他引:15  
通过盆栽实验,研究了美人蕉在镉污染土壤中的生长特征及对镉的吸收规律和修复能力。结果表明,在土壤中含镉质量浓度为0~5mg/kg时,美人蕉生物量有小量上升。随时间延长和土壤镉浓度增大,镉对美人蕉生长的抑制程度增强。美人蕉对镉的富集规律表现为根>茎>叶。在含镉5mg/kg的土壤中生长2个月,美人蕉可从土壤中带走的镉量为3.60t/(hm2·月)。美人蕉适合种植于低浓度污染土壤,在镉污染环境的修复方面具有良好的应用前景。  相似文献   

20.
介绍了电除尘器集散控制系统的仿真研究。基于不同运行工况的需求,建立了一系列仿真数学模型;设计并开发了电除尘器集敢控制系统的仿真软件;通过仿真实验。验证了所建立的仿真数学模型正确合理。所开发的仿真软件能模拟电除尘器集散控制系统的全部功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号