首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Within the EU, ash should be classified by its inherent hazardous effects under criterion H-14 (ecotoxic) in the Directive on waste (2008/98/EC). Today, however, there are no harmonized quantitative criterions for such a classification, but it is stated that biological test systems can be used. In this study seven ash materials were leached and characterized, both biologically and chemically. The objectives were to evaluate if (a) clear concentration-response relationships could be achieved for the selected toxicity tests (bacteria, algae, crustacean and fish), (b) some test(s) are generally more sensitive and (c) the toxic responses were consistent with the chemical analyzes. Interestingly, our results indicate that high concentrations of non-hazardous components (Ca, K) influenced the toxicity of almost all ash eluates, whereas hazardous components (e.g. Zn, Pb) only influenced the toxicity of the eluates ranked as most hazardous. If considering both hazardous and non-hazardous substances, the observed toxic responses were relatively consistent with the chemical analyzes. Our results further showed that the (sub)chronic tests were much more sensitive than the acute tests. However, the use of extrapolation factors to compensate for using the less sensitive acute tests will likely lead to either over- or underestimations of toxicity. Our recommendation is therefore that classification of waste according to H-14 should be based on (sub)chronic test data. Finally, given that treatment of the eluates prior to toxicity testing has a major significance on the concentration and speciation of released substances, further studies are needed in order to propose a relevant testing scheme.  相似文献   

2.
Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars.The chars were subjected to the leaching test ISO/TS 21268 – 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri.The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE).The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars.Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.  相似文献   

3.
Municipal and Industrial Solid Waste Incineration (MISWI) bottom ash is mainly deposited in landfills, but natural resources and energy could be saved if these ash materials would be used in geotechnical constructions. To enable such usage, knowledge is needed on their potential environmental impact. The aim of this study was to evaluate the ecotoxicity of leachates from MISWI bottom ash, aged for five years, in an environmental relevant way using a sequential batch leaching method at the Liquid/Solid-ratio interval 1–3, and to test the leachates in a (sub)chronic ecotoxicity test. Also, the leachates were characterized chemically and with the technique of diffusive gradients in thin films (DGTs). By comparing established ecotoxicity data for each element with chemically analysed and labile concentrations in the leachates, potentially problematic elements were identified by calculating Hazard Quotients (HQ). Overall, our results show that the ecotoxicity was in general low and decreased with increased leaching. A strong correspondence between calculated HQs and observed toxicity over the full L/S range was observed for K. However, K will likely not be problematic from a long-term environmental perspective when using the ash, since it is a naturally occurring essential macro element which is not classified as ecotoxic in the chemical legislation. Although Cu was measured in total concentrations close to where a toxic response is expected, even at L/S 3, the DGT-analysis showed that less than 50% was present in a labile fraction, indicating that Cu is complexed by organic ligands which reduce its bioavailability.  相似文献   

4.
Hazard classification of waste is a necessity, but the hazard properties (named “H” and soon “HP”) are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors.In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>1 0 0).Data for 45 wastes – documented with extensive chemical analysis and flammability test – were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values.This data set showed HP 14 ‘Ecotoxic chronic’ is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 ‘Carcinogenic’. The third most frequent hazard is HP 10 ‘Toxic for reproduction’ and the fourth most frequent hazard is HP 4 “Irritant – skin irritation and eye damage”. In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties.The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified.  相似文献   

5.
In the European Waste List (2000/532/EC as amended) the ash of municipal waste incineration is defined as a so called mirror entry. This waste can be classified as hazardous or non-hazardous depending on the content of hazardous substances and other risk properties. For the assignment of waste in mirror entries, 14 criteria are defined. One of the criteria is H14 “ecotoxic”. In the presented study, the ecotoxicological potential of 12 ashes from different incineration plants has been assessed using biological test systems. The test battery included aquatic tests with eluates (algae, daphnids, and luminescent bacteria) and terrestrial tests with solid waste (plants, earthworms and bacteria). The test results revealed a clear ecotoxicological hazard potential for some of the MWI ashes. Despite the fact that fresh ashes were several times more toxic than aged ashes both groups did not differ consistently in terms of toxicity. The results show also that there is no correlation between the biological effects and the analyzed chemical compounds of the ash samples.  相似文献   

6.
The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (~10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1 mm and <4 mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe.  相似文献   

7.
In this paper, chemical and ecotoxicological data of leachates from bottom ashes collected in different Municipal Solid Waste Incinerators (MSWI) are shown. The bottom ashes were collected in Belgium (three incinerators--samples B1 to B3), France, Germany, Italy and United Kingdom (one incinerator in each country--samples F1, D1, I1 and UK1, respectively). Both chemical and ecotoxicological characterizations of leachates were done on the framework of the European Directive 91/689/EEC and the European Council Decision 94/904/EC. This work was carried out under the European project called Valomat, which was supported by the European Commission through Brite-Euram III program. Twenty-one inorganic parameters were analyzed. The ecotoxicological assays were done under standard laboratory conditions, using the bacterium Photobacterium phosphoreum, the freshwater alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the vegetable Lactuca sativa. Chemical data varied from sample to sample. Similar results were obtained in biological assays. The samples can be classified as ecotoxic/hazardous according to the French proposal for a Criterion and Evaluation Methods of Waste Ecotoxicity (CEMWE) and the German regulation on Hazardous Waste Classification (HWC). However, samples B1, B2, B3 and D1 comply the maximum limits for direct valorization category defined in the French Classification of Bottom Ashes based on their Polluting Potential (CBAPP). Sample B1 presented the lowest level of ecotoxicity, being considered as the most interesting to be used in the development of new materials for civil engineering works.  相似文献   

8.
Biodegradation of poly (ethyl glyoxylate) (PEtG), a functionalized polyacetal, was investigated over 6?month according to ASTM 5988-96 modified method and compared to micronized cellulose. More than 95?% of the polymer was converted into CO2 over that period attesting the biodegradability of PEtG. The degradation by-products toxicity and ecotoxicity were evaluated. Toxicity was checked using an innovant non-mammalian toxicological model using the nematode Caenorhabditis elegans. Ecotoxicity was performed using a plant growth test with cress (Lepidium Sativum), and barley (Hordeum vulgare). In all cases, results concluded on the harmlessness of PEtG and relative by-products.  相似文献   

9.
A research project was carried out to evaluate ecotoxicological effects of mature compost addition to agricultural soil, using a battery of ecotoxicological tests. The following species were selected: plant of Lepidium sativum, earthworm Eisenia foetida, aquatic crustacean Daphnia magna and bacteria Vibrio fischeri. The tests were classified as “direct tests” using solid compost samples and “indirect tests” using compost leaching test eluate. The direct bioassays were performed using compost added to artificial soil in concentrations ranging from 2.5 to 100 % (w/w); the indirect ones considered compost eluate, added to a standard solution in the same concentrations used in the direct tests. Both tests aimed at obtaining the ecotoxicological parameters (LC50 and EC50). These values were then utilized to implement the Species Sensitivity Distribution (SSD) analysis and extrapolate the Hazard Concentration (HC), a useful threshold to preserve the biodiversity of agricultural ecosystems. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, for direct tests compost dosage below 10 % showed low toxicity, while for indirect ones the toxicity was higher. Furthermore, SSD analysis showed a Hazardous Concentration (HC5) for direct bioassays of 3.5 % and for indirect of 14 %.  相似文献   

10.
Leaching of Al, Ca, Mg, Si, S, Ba, Sr, Mo, Zn, Cd, Pb, and Cu from waste incineration air-pollution-control (APC) residues was investigated. Real-life conditions, i.e. removal of readily soluble compounds and longer equilibration time, were considered. Three different pH-static leaching experiments evaluating the importance of salt level and equilibration time were performed: (i) 48-h test on untreated APC residue samples, (ii) 48-h test on washed residue samples, and finally (iii) a 172-h test on washed residue samples. Experimental data were evaluated by geochemical modelling to identify potential solubility controlling minerals. For some elements (Al, Ca, Mg, Si, S, Mo, Zn, Cd, and Cu) the same controlling minerals were suggested regardless of the equilibration period or untreated/washed character of the tested material, whereas leaching of other elements (Ba, Sr) was far better described by considering a longer equilibration time, thereby pointing out the kinetic effects. Finally, a significant fraction of total lead (57%) was found to be rather mobile in the initial stage of leaching. Both pre-washing of the residues and longer equilibration times were shown to be simple yet useful methods to identify mineral phases that could control the release of constituents after the removal of readily soluble compounds in the initial stage of leaching.  相似文献   

11.
The fresh- and seawater quality in Magnesia, Greece, was evaluated in this work, using a combination of bioassays and chemical analytical techniques. The crustacean and the invertebrate saline water shrimp Artemia franciscana were used as test species for monitoring the quality of fresh- and seawater samples respectively. Furthermore, chemical analysis was performed in the samples, for the assessment of pollutants loading. In general, both fresh- and seawater toxicity was low, indicating the good environmental conditions in the area. However, two seawater samples and one freshwater sample, presented high toxicity values, which is in agreement with the chemical measurements.  相似文献   

12.
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion.  相似文献   

13.
Artificial aqueous samples (eluates, percolates, immersion waters) were obtained from contaminated soils and stabilized industrial wastes. The toxicity and genotoxicity of these aqueous fractions have been evaluated in vivo in the aquatic larvae of the amphibian Xenopus laevis. Four biotests have been applied: a test of subchronic toxicity and three biomakers: (1) measurement of the activity of ethoxyresorufine-o-dealkylase in the liver, (2) detection of DNA adducts in the liver and the blood, and (3) measurement of the rate of micronuclei in the erythrocytes. Biological datas were completed through a chemical analysis. The main conclusions of this study are: The importance of integrating different toxicity criterias into a biological battery (phenotypic and genotypic criterias). Some aqueous extracts did not seem to be very toxic, whereas their genotoxic effects were rather significant [e.g. the stabilized Municipal Solid Waste (MSW) ashes]. The importance of coupling together chemical and biological approaches to refine the impact. Actually, some eluates (lixiviation or percolation) coming from polluted soils appeared to be very poorly loaded with pollutants, whereas the toxic and genotoxic impact of these complex matrices were rather noticeable. In addition, when applying the leaching standardized procedure, the hazardous potential of the two analysed soils may be underestimated if the results on percolates and on eluates have been compared. This study highligths the importance of coupling the tools of characterization and preparation of samples to be analysed according to the objectives to be reached.  相似文献   

14.
Chemical stabilization of heavy metals in medical waste fly ash has been carried out using the following compounds: a chelating agent (Ashnite S803), a commercial acidic phosphoric acid solution (Ashnite R303) as well as basic one (Ashnite R201). In order to predict the leachability of heavy metals, Japanese Leaching Test (JLT-13) procedure was applied to the stabilized fly ash products. An ecotoxicity assessment of the stabilized fly ash products leachate and the unstabilized fly ash leachate was conducted using a battery of bioassays based on lettuce root elongation inhibition, Daphnia magna mortality and Vibrio fischeri photoinhibition. The results showed that the three stabilizing agents were able to significantly decrease (ANOVA, P < 0.05) the concentration of heavy metals in the leachates. Although the leachate from both stabilized and unstabilized fly ash were very toxic to lettuce and daphnids, the incorporation of these stabilizing agents diminished significantly (ANOVA, P < 0.05) the toxicity of the leachates towards the three tested organisms. Pearson correlation analysis was used to analyze the strength of the relationship between chemical elements concentration in the leachate and bioassays results. Most of the heavy metals in the leachate were significantly correlated (ANOVA, P < 0.05) with the toxicity values of the bioassays. However, the correlation was not found between the concentration of dissolved organic carbon (DOC) and the toxicity effect of the leachate to the tested organisms.  相似文献   

15.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   

16.
In the present study toxicity tests were performed in order to determine the toxic properties of four organotin compounds and three heavy metals and to examine the interactive effects of binary metal mixtures on two different test species: the freshwater crustacean Daphnia magna and the marine bacterium Vibrio fischeri. D. magna proved to be more sensitive to metals than V. fischeri. Tributyltin chloride and copper were found to be the most toxic substances on both test organisms. The interactive effects between trimethyltin chloride/copper and trimethyltin/chromium on both test species were investigated and synergistic, additive and antagonistic actions were observed.  相似文献   

17.
Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO(4)*nH(2)O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes the altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.  相似文献   

18.
Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions applied at liquid-to-solid (L/S) ratios of L/S 2L/kg and 12L/kg, respectively. Concentrations of Na, K, Cl(-), Ca, Si, SO(4)(2-), Al, Cu, Ni, Mo, Ba, Pb, Zn, and dissolved organic carbon (DOC) were monitored throughout the entire leaching period; geochemical modeling was used to identify non-equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl(-), and K) and solubility-controlled elements (i.e., Ca, SO(4)(2-), Ba, Si, Al, Zn, and Pb). The leaching of Cu and Ni was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed columns was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate that the leaching of DOC-related metals in laboratory column experiments may be considerably underestimated compared with full-scale scenarios in which the impacts from non-equilibrium may be significantly lower. The leaching of Mo (or MoO(4)(2-)) may be controlled solely by its availability in the mobile zone, which in turn appeared to be controlled by diffusion from the stagnant zone; no Mo controlling minerals were predicted by the geochemical modeling.  相似文献   

19.
In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl?, Mg2+, and Ca2+, may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions.  相似文献   

20.
Technology development has brought beneficial changes in the functions of smartphones but has the potential to impact the environment due to the high generation of waste smartphones. Thus, this study evaluates and compares environmental impact potentials from metals in waste smartphones to figure out the effect of smartphone model replacements on hazardous waste, resource depletion, and toxicity potentials. The total threshold limit concentration (TTLC) analysis is used to determine whether the waste smartphones would be classified as hazardous waste, and the life-cycle impact assessment methods are used to evaluate resource depletion, cancer, non-cancer, and ecotoxicity potentials. The TTLC results showed that the smartphone technology development did not reduce hazardous waste potentials. The life-cycle impact assessment results showed that the technology development overall reduced resource depletion potential but increased toxicity potential. In addition, priority metals contributing to the potentials were identified to effectively manage their environmental impacts. This study can provide fundamental information for smartphone manufacturers, waste smartphone recyclers and disposers, and e-waste policymakers to circulate resources and to prevent environmental pollutions from hazardous and toxic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号