首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Potatoes were grown in Plainfield sand and muck treated, in furrow, with aldicarb (Temik 15G, 3.36 kg Al/ha). .Soils were contained in 2 mz field plots and had not been treated previously with pesticides. Soil, seed pieces, foliage and tubers were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 12 wk following planting. The disappearance of aldicarb from the soil was accompanied by partial conversion to the sulfoxide and sulfone. After increasing rapidly during the first 2 wk, the aldicarb concentration in the seed piece declined and a similar concentration of aldicarb sulfoxide accumulated which subsequently slowly disappeared. Aldicarb sulfoxide was the major insecticidal material in the new foliage. High initial concentrations, observed at 3–4 wk, declined by about 90% after 6 wk. Aldicarb sulfoxide residues of 2–4 ppm in the first new tubers at 6 wk declined by 90% by 12 wk. Potatoes were also grown under greenhouse conditions in Plainfield sand treated with Temik 10G at rates equivalent to 1.68, 3.36 and 6.72 kg Al/ha. Maximum aldicarb sulfoxide concentrations in soil, seed piece and foliage increased with application rate. The sulfoxide was much more persistent in the soil and foliage than in the field experiment indicating the importance of environmental factors to its behaviour in both soil and potato plants.  相似文献   

2.
Degradation kinetics of aldicarb [2-methyl-2-(methylthio) propionaldehyde O-(methyl carbamoyl) oxime] in surface and subsurface soil containing different levels of sodium dodecylbenzenesulfonate (SDBS) were determined to understand complex effect of SDBS on aldicarb degradation process. The results showed that degradation curves of aldicarb in soil can be described with first order kinetics formula and the degradation rate constant. k (d(-1)), in surface soil was larger than that in subsurface soil. SDBS can accelerate the degradation of aldicarb in soil and there was a good linear relationship between degradation rate constant and the logarithm of SDBS concentration. The possible reasons were that SDBS could change pH value of soil, have solubilization effect on aldicarb, and be used as carbon source of microorganisms. But SDBS had a larger promotion to the degradation of aldicarb in surface than in subsurface soil. When SDBS concentration was 1000 mg/kg of dried soil the first order degradation rate constant of aldicarb could be increased by 56.6 percent in surface soil and by 27.6 percent in subsurface soil, respectively.  相似文献   

3.
The dechlorination of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) via reaction with metallic iron under low-oxygen conditions was studied using reaction mixture pH values of 2.0, 3.0, and 3.8. The pH control was achieved through addition of sulfuric acid throughout the duration of the reaction. The lower the pH of the reaction mixture, the faster the degradation of atrazine. The surface area of the sulfuric acid-treated iron particles was 0.31 (+/- 0.01) m2 g-1 and the surface area normalized initial pseudo-first order rate constants (kSA, where rate = kSA x (surface area/l) x [Atrazine]) at pH values of 2.0, 3.0, and 3.8 were equal to, respectively, 3.0 (+/- 0.4) x 10(-3) min-1 m-2 l, 5 (+/- 3) x 10(-4) min-1 m-2 l, and 1 (+/- 1) x 10(-4) min-1 m-2 l. The observed products of the degradation reaction were dechlorinated atrazine (2-ethylamino-4-isopropylamino-1,3,5-triazine) and possibly hydroxyatrazine (2-ethylamino-4-isopropylamino-6-hydroxy-s-triazine). Triazine ring protonation may account, at least in part, for the observed effect of pH on atrazine dechlorination via metallic iron.  相似文献   

4.
Cáceres T  Megharaj M  Naidu R 《Chemosphere》2007,66(7):1264-1269
The acute toxicity of an organophosphorous pesticide, fenamiphos and its metabolites, fenamiphos sulfoxide, fenamiphos sulfone, fenamiphos phenol, fenamiphos sulfoxide phenol and fenamiphos sulfone phenol, to a cladoceran, Daphnia carinata was studied in both cladoceran culture medium and natural water collected from a local river. The toxicity followed the order: fenamiphos>fenamiphos sulfone>fenamiphos sulfoxide. The hydrolysis products of fenamiphos, F. sulfoxide (FSO) and F. sulfone (FSO(2)) (F. phenol, FSO phenol and FSO(2) phenol) were not toxic to D. carinata up to 500microgl(-1) water, suggesting hydrolysis reaction leads to detoxification. Also the toxicity was reduced in natural water compared to the cladoceran culture medium due to microbial mediated degradation of toxicants in the natural water. Fenamiphos and its metabolites were stable in both cladoceran water and filter-sterilised natural water while these compounds showed degradation in unfiltered natural water implicating the microbial role in degradation of these compounds. To our knowledge this is the first study on acute toxicity of fenamiphos metabolites to cladoceran and this study suggests that the organophosphate pesticides are highly toxic to fresh water invertebrates and therefore pollution with these compounds may adversely affect the natural ecosystems.  相似文献   

5.
Relative importance of hydrolysis and photolysis of atrazine and its degradation products in aqueous solutions with dissolved humic acids (HA) has been assessed under exposure to sunlight and under UV irradiation. Quantum yield for direct photolysis of atrazine at 254 nm was 0.037 mol photon(-1), the reaction order was 0.8. Atrazine, desethylatrazine and desisopropylatrazine converted to their 2-hydroxy analogs with rate constants 0.02-0.08 min(-1) in clear solutions, while addition of HA (300 mg L(-1)) caused a 10-fold increase in rate constants. Hydroxyatrazine was not degraded. No evidence of photo-Fenton reaction was found. Under exposure to solar light, atrazine, desethylatrazine and desisopropylatrazine were converted to 2-hydroxy analogs only at pH 2 because of acid hydrolysis and possible contribution of photolysis. At lower HA concentration, only their light-shielding effect was noticed, while at higher concentrations, HA-catalysed hydrolysis prevailed. Hydroxyatrazine concentration diminished at all pH values in solutions without HA exposed to sunlight.  相似文献   

6.
A 1.7-ha section of citrus grove near Lake Hamilton was the site of a three-year field study designed to monitor the movement and degradation of the nematicide and insecticide aldicarb in the central ridge area of Florida. Soil cores were used to monitor the fate of aldicarb residues in the unsaturated zone and over 2,000 groundwater samples were collected from 174 monitoring wells to measure horizontal and vertical transport of aldicarb residues in the saturated zone. A simple saturated zone model was used to estimate the degradation rate of aldicarb residues and extrapolate findings to other ridge areas.The results of the study suggest that in the saturated zone aldicarb residues degrade at a rate corresponding to a half-life of approximately eight months. The predominantly horizontal movement of groundwater at this site limits aldicarb residues to the upper three to five meters of the saturated zone. Field data from this site together with unsaturated and saturated zone simulations suggest that in this area of Florida current restrictions on aldicarb used near potable wells are adequate to protect drinking water supplies.  相似文献   

7.
Abstract

Terbufos, t. sulfoxide and t. sulfone (5 μg ml‐1) were incubated in natural, sterilized natural and distilled water, with initial pH values of 8.8, 8.8 and 6.0, respectively, at 20°C. First‐order disappearance was observed for the three compounds. Rates in natural and sterilized water were similar indicating chemical degradation predominated. Terbufos disappeared rapidly (t½>=3 days) in all systems. T. sulfoxide and t. sulfone were more persistent in the natural (t½>=18–40 days) and distilled water (t½>=280–350 days). Adsorption data for the three compounds in four soil‐water systems showed the decreasing order of adsorption to be terbufos>>t. sulfoxide=t. sulfone. Desorption from soils fortified at 5 μg g‐1 with water was examined for 4 successive 18‐hr cycles. T. sulfoxide and t. sulfone were totally desorbed; terbufos was too unstable to study. The mobility of the compound in soil eluted with water was in the order, t. sulfoxide=t. sulfone>> terbufos, in agreement with adsorption‐desorption results. The octanol‐water partitioning coefficients for terbufos, t. sulfoxide and t. sulfone, at 23°C, were 3:30 x 10 , 164, and 302, respectively.  相似文献   

8.
Sun H  Xu J  Yang S  Liu G  Dai S 《Chemosphere》2004,54(4):569-574
Experiments were conducted to investigate the degradation of aldicarb, an oxime carbamate insecticide, in sterile, non-sterile and plant-grown soils, and the capability of different plant species to accumulate the pesticide. The degradation of aldicarb in soil followed first-order kinetics. Half lives (t1/2) of aldicarb in sterile and non-sterile soil were 12.0 and 2.7 days, respectively, which indicated that microorganisms played an important part in the degradation of aldicarb in soil. Aldicarb disappeared more quickly (p< or =0.05) in the soil with the presence of plants, and t1/2 of the pesticide were 1.6, 1.4 and 1.7 days in the soil grown with corn, mung bean and cowpea, respectively. Comparison of plant-promoted degradation and plant uptake showed that the enhanced removal of aldicarb in plant-grown soil was mainly due to plant-promoted degradation in the rhizosphere.  相似文献   

9.
The effect of dissolved humic acid (HA) on two types of hydrolysis reactions was investigated: (I) dehydrochlorination of gamma-hexachlorocyclohexane (HCH) and 1,1,2,2-tetrachloroethane (TeCA) as a reaction involving hydroxide ions (OH(-)) and (II) hydrolysis of 1-octyl acetate (OA) which is catalyzed by H(+) at the applied pH value (pH 4.5). The rate of TeCA hydrolysis was not affected by addition of 2 g l(-1) of HA at pH 10 (k' = 0.33 h(-1)) but HCH hydrolysis was significantly inhibited (k' = 4.6 x 10(-3) h(-1) without HA and 2.8 x 10(-3)h(-1) at 2 g l(-1) HA). HCH is sorbed by 51% whereas TeCA sorption is insignificant at this HA concentration. Sorbed HCH molecules are effectively protected due to electrostatic repulsion of OH(-) by the net negative charge of the HA molecules. In contrast, OA hydrolysis at pH 4.5 (k' = 1.6 x 10(-5) h(-1)) was drastically accelerated after addition of 2 g l(-1) HA (k' = 1.1 x 10(-3) h(-1)). The ratio of the pseudo-first-order rate constants of the sorbed and the freely dissolved ester fraction is about 70. H(+) accumulation in the microenvironment of the negatively charged HA molecules was suggested to contribute to the higher reaction rate for the sorbed fraction in case of this H(+)-catalyzed reaction. Analogous effects from anionic surfactants are known as micellar catalysis.  相似文献   

10.
研究了UV/H2O2工艺对十二烷基苯磺酸钠(LAS)的去除效果、溶液中阴离子对LAS降解的影响及机理.结果表明:UV/H2O2工艺可以有效地去除水中的LAS;在H2O2投加量为8 mg/L,14 W低压汞灯照射下,LAS在蒸馏水和自来水中的反应速率常数分别为0.018 0 、0.012 2 min-1;NO-3、Cl-、SO2-4和HCO-3对LAS光降解有抑制作用,当该4种离子摩尔浓度均分别为5、10、15 mmol/L时,对LAS光降解的抑制程度为HCO-3》NO-3》Cl-》SO2-4,且随着离子摩尔浓度的增大,抑制作用增强;LAS在自来水中的反应速率常数低于在蒸馏水中的反应速率常数是由于水中多种离子影响的结果.  相似文献   

11.
In an effort to help with the development of effective dip vat management and waste disposal strategies this study determined how solution properties such as pH, buffer composition, ionic strength, temperature, solubility in organic solvents and the addition of commonly used solubilizing agents influenced the hydrolysis of amitraz. Amitraz degrade by means of hydrolysis described by a pseudo-first order rate process and a type ABCD pH rate profile. Hydrolysis increased with temperature and was fastest at low pH, slowest at neutral to slightly alkaline pH, and slightly increased above pH 10. However, buffer concentration and ionic strength influenced the hydrolysis rate and had to be accounted for before constructing a pH rate profile. Hydrolysis seems to depend on the dielectric constant of solvent mixtures and was fastest in water, slower in propylene glycol and ethanol solutions, and slowest in DMSO mixtures. In surfactant solutions, anionic micelles enhanced and cationic micelles retarded the hydrolysis rate. The magnitude of micellar effects decreased with increasing concentrations of the surfactants. The increased solubility and faster hydrolysis of amitraz in the sodium lauryl sulfate solutions showed that anionic surfactants potentially could be used for cleaning up amitraz spills, because it both solubilized the drug and catalyzed hydrolysis.  相似文献   

12.
Lee W  Batchelor B 《Chemosphere》2004,56(10):999-1009
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment.  相似文献   

13.
Aldicarb and aldoxycarb pesticides were applied to potato fields in central Wisconsin to study the degradation and movement of their carbamate residues within the soil profile. Aldicarb and aldoxycarb residues degraded at similar rates with half-lives ranging from 0.9 to 1.4 months. Although unsaturated-zone residue measurements indicated relatively minor differences among the three plots, residues were detected in shallow groundwater beneath plots treated with aldicarb or aldoxycarb at planting. Residues beneath the plot treated with aldicarb at emergence were much lower and the timing of these residues suggests they might have resulted from migration of residues from the plot treated with aldicarb at planting. This study confirms the results of previous and concurrent research programs which suggest that emergence applications of aldicarb reduce the potential for residues to enter shallow groundwater without reducing insect control or potato yields.  相似文献   

14.
Studies to measure the degradation and movement of aldicarb residues in the unsaturated and saturated zone were conducted during 1984 at three central California locations. These test sites, which consist of a tomato field near Manteca and vineyards near Livingston and Fresno are representative of conditions in central California under which aldicarb residues are most likely to reach drinking-water supplies.Results indicate that aldicarb residues degrade in the unsaturated zone with a half-life of 1.5–2.0 months. In areas with shallow water tables (less than three meters deep), traces of aldicarb residues may occasionally enter the upper one to five meters of the saturated zone where they degrade before reaching deeper, potable water supplies.  相似文献   

15.
Ning B  Graham NJ  Zhang Y 《Chemosphere》2007,68(6):1173-1179
The indirect reaction of octylphenol (OP) and nonylphenol (NP) with hydroxyl radicals (*OH) during ozonation was investigated at pH values ranging from 6 to 9. A parameter Rct, representing the ratio of the *OH-exposure to the ozone-exposure, was measured using a method involving a low concentration of p-chlorobenzoic acid as a *OH-probe compound during the ozonation. By assuming that Rct is a constant value at a given pH, the second order rate constants of the alkylphenol reaction with hydroxyl radicals were determined as 1.4(+/-0.2) x 10(10) and 1.1(+/-0.2) x 10(10) M(-1) s(-1) for OP and NP, respectively. The proportions of each alkylphenol degraded by direct molecular ozone reaction and indirect hydroxyl radical reaction were predicted at different pH values. The contribution of indirect *OH reactions with each AP was found to represent over 50% of the total degradation for pH approximately 7, and the contribution increases substantially with pH>7.  相似文献   

16.
Ning B  Graham NJ  Zhang Y 《Chemosphere》2007,68(6):1163-1172
This aqueous reaction between ozone and two alkylphenols (APs), namely octylphenol (OP) and nonylphenol (NP), has been investigated. Both compounds are important endocrine disrupting chemicals, which arise from the biodegradation of alkylphenol ethoxylates and are often found at relatively high concentrations in wastewater effluents. In this paper the results of an experimental study are presented which provide values for the reaction rate constants between molecular ozone and undissociated OP and NP, and overall reaction rate constants for the degradation of the two APs at pH values in the range of 7-9. The kinetic rate constants for OP and NP degradation by molecular ozone were 4.33(+/-0.18) x 10(4) and 3.90(+/-0.10) x 10(4) M(-1) s(-1), and the reaction stoichiometry was similar in both cases and equal to approximately 1.3:1 ([O3]:[AP]). The overall second order reaction rate constants for the two APs increased significantly with increasing pH, which is believed to be mainly due to the increasing influence of indirect radical reaction with increasing pH; this aspect is considered in more detail in a companion paper. A preliminary investigation of the reaction mechanism suggests that an initial product of ozonation is hydroxyl-alkyl phenol.  相似文献   

17.
Aldicarb is a soil-applied systemic pesticide the USEPA is now considering banning in the USA. Aldicarb is fairly rapidly oxidized to the sulfoxide, with a half-life of approximately 7 days in some soils, and much more slowly to the sulfone (pH-dependent with half-lives varying from a few minutes at a pH of > 12 to approximately 560 days at a pH of 6.0). Persistence, carry-over and translocation vary with soil and environmental conditions. Drainage aquifers and drinking water wells are known to be susceptible to contamination, levels of approximately 550 ppb have been recorded. Foods are also known to take up the pesticide; levels of 600 ppb have been found in potatoes.  相似文献   

18.
The hydrolysis of the insecticide pyraclofos in buffered solutions at pH 5.0, 7.0 and 9.0, and its sorption on four soils of different physicochemical properties were investigated. The results showed that the degradation of pyraclofos in buffered solutions followed pseudo-first-order kinetics. At 40 degrees C, the rate constants for the hydrolysis of pyraclofos at pH 5.0, 7.0 and 9.0 were 0.0214, 0.1293, and 2.1656 d(-1), respectively. Pyraclofos was relatively stable under both acidic and neutral conditions, while it was readily hydrolyzed under basic conditions. The sorption of pyraclofos on four soils was well described by the Freundlich equation. The sorption constant, K(f), increased with an increase in soil organic carbon content, suggesting that organic carbon content was an important factor affecting sorption. The K(oc) values for Xiaoshan clay loam soil, Hangzhou I clay loam soil, Hangzhou II soil, and Fuyang silt loam soil were 30.4, 6.7, 5.3, and 7.1, respectively. These results suggest that the sorption of pyraclofos on the tested soils was relatively weak.  相似文献   

19.
Abstract

A high‐intensity short‐wavelength UV light system was studied for its ability to degrade the pesticides carbofuran, fenamiphos sulfoxide (nemacur sulfoxide), and propazine in aqueous solutions. Half‐lives, rate constants, and breakdown products were determined for all chemicals. The presence of hydrogen peroxide, an oxidant and potential source of hydroxyl radicals, had no effect on the rate of breakdown of any of the chemicals investigated. Short‐wavelength UV light appears to be solely responsible for the observed pesticide breakdown. The breakdown of all three pesticides followed first order kinetics. Carbofuran, nemacur sulfoxide, and propazine had half lives of 3.9, 1.1, and 3.9 minutes, respectively. Breakdown product analysis was performed using capillary gas chromatography/mass spectrometry.  相似文献   

20.
Aldicarb, Temik 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredient)/ha and carrots (Daucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 61 to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot greater than in soil greater than in hydroponic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号