首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k20 (the first-order rate constant at 20 °C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k20, k20s (first-order rate coefficient of slow fraction of BVS at 20 °C) of the sewage sludge were estimated as 0.082 and 0.015 d?1, respectively.  相似文献   

2.
Various sludge composting methods used in France are described and evaluated in terms of the daily capacity and other factors. Simple windrows with mechanical turning, aerated static piles, BAV aerated reactors and Siloda mechanically turned and aerated chambers are described. Capacities range from 0.5 to more than 50 dry tons of sludge per day.  相似文献   

3.
Sewage and sewage sludge is known to contain pharmaceuticals, and since sewage sludge is often used as fertilizer within agriculture, the reduction of the selective serotonin reuptake inhibitors (SSRIs) Citalopram, Sertraline, Paroxetine, Fluvoxamine and Fluoxetine during composting has been investigated. Sewage sludge was spiked with the SSRIs before the composting experiment started, and the concentration of the SSRIs in the sludge during a 21 day composting period was measured by liquid phase microextraction (LPME) and high-performance liquid chromatography–mass spectrometry. All the SSRIs had a significant decrease in concentration during the composting process. The highest reduction rates were measured for Fluoxetine and Paroxetine and the lowest for Citalopram. In addition three out of four known SSRI metabolites were found in all the samples, and two of them showed a significant increase in concentration during the composting period.  相似文献   

4.
5.
6.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.  相似文献   

7.
The main limiting factor, in order to use compost in agriculture, is the total concentration of heavy metals. Natural zeolites, such as clinoptilolite, have the ability to take up and remove those metals by utilizing ion exchange. However, it is important to know about the fractionation of the heavy metals during the thermophilic phase and the maturation phase. The purpose of this work was to determine the changes in the fraction of heavy metals in sewage sludge compost in which clinoptilolite is used as a bulking agent to remove metals. The final result indicates that a significant (p < 0.05) percentage of the metals, which is not removed by the zeolite, is associated with the residual fraction which is considered as an inert form.  相似文献   

8.
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O2 was the main reason for H2S production. Maintaining the O2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting.  相似文献   

9.
10.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

11.
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain.  相似文献   

12.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

13.
The concentration and bioavailability of heavy metals in composted organic wastes have negative environmental impacts following land application. Aerobic composting procedures were conducted to investigate the influences of selected parameters on heavy metal speciation and phytotoxicity. Results showed that both of sewage sludge (SSC) and swine manure (SMC) composting systems decreased the pH, the content of organic matter (OM) and dissolved organic carbon (DOC), and total amounts of Cu, Zn and Pb. Sequential extraction showed that readily extractible fractions of exchangeable and carbonate in Cu and Zn increased during SSC composting but decreased during SMC composting, thus their bioavailability factors (BF) enhanced in SSC but declined in SMC. The fraction of reducible iron and manganese (FeMnOX) of Cu and Zn in SSC and FeMnOX-Cu in SMC decreased, but FeMnOX-Zn in SMC gradually increased in the process of compost. In contrast, the changes of Pb distributions were similar in two organic wastes. Pb was preferentially bound to the residual fraction and its BF decreased. The evolution of heavy metal distributions and BF depended on not only total metal concentrations but also the other properties, such as pH, decomposition of OM and decline of DOC. The germination rate (RSG), root growth (RRG) and germination index (GI) of pakchoi (Brassica Chinensis L.) increased during the composting process. Linear regression analysis demonstrated that GI, which could represent phytotoxic behavior to the plants, could be poorly predicted by BF or total amount of metals, i.e., BF-Zn, T-Cu. However, the inclusion of other physicochemical parameters (pH, OM and DOC) could enhance the linear regression significances (R).  相似文献   

14.
城市污泥制备水中重金属吸附剂及其吸附特性研究   总被引:1,自引:0,他引:1  
本实验利用城市污水厂的脱水污泥,通过化学活化法制备活性炭.研究活化温度、活化时间、固液比和活化剂浓度等因素对制备污泥活性炭的影响,确定氯化锌法制备污泥活性炭的最佳工艺为活化温度550 ℃、活化时间30 min、固液比1∶2、氯化剂浓度45%.将制备的污泥活性炭吸附Cu2+,Cr6+,Cd2+3种重金属离子模拟废水,研究pH值、吸附时间、污泥投加量、温度等因素对吸附过程的影响.实验结果表明,剩余污泥对Cu2+,Cr6+,Cd2+3种重金属离子都具有良好的吸附效果,在优化条件下,3种重金属离子去除率分别达到94%,76%,81%,吸附能力大小顺序为Cu2+>Cd2+>+Cr6+.  相似文献   

15.
As a result of a demonstration project partly sponsored by the United States Environmental Protection Agency in cooperation with the Indianapolis Center for Advanced Research, the City of Indianapolis, Indiana, realized a 34% fuel savings for sewage sludge incineration. At the same time, sludge throughput was increased 10%. In addition to these proven savings, operational downtime for repairs was reduced, maintenance costs were reduced, and air pollution was reduced. The air pollution reduction allowed Indianapolis to cancel a $3,000,000 construction program for air pollution abatement.Other cities incinerating sewage sludge in the United States that have initiated the fuel efficient mode of operation have saved even more fuel than Indianapolis. Nashville, Tennessee, reduced its fuel usage 40%; Buffalo, New York, reduced its fuel usage 47% from design expectations; Hartford, Connecticut, reduced its fuel usage 51 %; and Jacksonville, Florida has reduced its fuel usage over 50%.These savings result from installing additional instrumentation and controls (often not required at newer facilities), modifying the incinerator operating methods, and training the operators to operate the facilities more efficiently. At Indianapolis, it cost $20,000 per incinerator for instrumentation and operator training. This was an older plant and required a maximum amount of new controls and instrumentation; however, the payback for this $20,000 was less than three months due to the reduction in fuel use based on an oil price of $0.264 per litre ($1.00 per gallon). In the other cities where instrumentation controls were adequate, the cost for developing the now operating mode and training the operators averaged $75,000 per city.  相似文献   

16.
Humic acids obtained from sewage sludge both before and after composting were characterized, and the influence of composting on the formation of more stable and polycondensed structures was studied. These humic acids showed an aliphatic character and although no great differences between humic acids from uncomposted and composted sewage sludge were observed, data from elemental analysis, E4/E5 ratio, filtration through Sephadex G-100 gel and infra-red spectra seemed to demonstrate that more polycondensed structures and hence a more stable organic matter, was obtained with the composting process.  相似文献   

17.
To assess the environmental quality of compost, it is insufficient to use only total metal concentration. Therefore in this study, the stability of metals in compost and the environmental risk they pose were assessed by three indices that have been proposed for soils or sediments: the IR, the RAC and the MRI. In mature composts, the highest bonding intensity was for Ni (0.79 < IR < 0.93), then for Cu (0.56 < IR < 0.65) and Pb (0.55 < IR < 0.73), and the lowest for Zn (0.19 < IR < 0.25). Although, both the IR and the RAC are useful indices for evaluating the mobility of metals, they do not take into account their toxicity. Therefore, the overall classification of compost should also include the MRI, at which metal toxicity from the most available fractions is considered. Based on the MRI ranged between 10.0 and 11.6, all composts evaluated posed a low risk.  相似文献   

18.
Bricks produced from sewage sludge in different compositions were investigated. Results of the tests indicated that the sludge proportion is a key factor in determining the brick quality. Increasing the sludge content results in a decrease in brick shrinkage, bulk density, and compressive strength. Brick weight loss on ignition was mainly due to the contribution of the contained organic matter from the sludge being burnt off during the firing process, as well as inorganic substances found in both clay and sludge. The physical, mechanical, and chemical properties of the bricks that were supplemented with various proportions of dried sludge from 10 to 40wt% and generally complied with the General Specification for Brick as per the Malaysian Standard MS 7.6:1972, which dictates the requirements for clay bricks used in walling in general. A standard leaching test method also showed that the leaching of metals from the bricks is very low.  相似文献   

19.
The United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100bar under anoxic and/or reducing conditions. The purpose of this study was to examine the HT treatment of municipal sewage sludge and infectious fecal microbial cultures with respect to waste volume reduction, biological sterilization, and the generation of usable hydrocarbon product mixtures. These endpoints from HT treatment also were compared to those from pyrolysis. HT at 400 degrees C/150bar transformed sewage sludge solids into complex gas phase (4%) and liquid (6%) hydrocarbon mixtures (approximately 11% combined yield), along with similar amounts (5%) of solid residues. HT products in the aqueous phase (e.g., alcohols) were present but not analysed. Viable mixed fecal cultures (10(9) colony forming units/mL) were completely sterilized by HT treatment, and a hydrocarbon mixture also was generated from the cells, but it was markedly different from that resulting from HT of the sludge. The hydrocarbon assemblage generated from the sludge included n-hydrocarbons (C(9)-C(20)) and alkyl substituted benzenes, phenols, and related compound series of higher mass (e.g., indanes, naphthalenes). Light aromatic parent compounds were significantly less abundant than their substituted C(1)-C(5) alkyl series and there was a paucity of N-, O- and S-heterocycles and polycyclic systems with more than three fused rings. This was different from the products of pyrolysis which were dominated by a relatively simple mixture of linear and branched hydrocarbons and their oxidized homologues (e.g., aldehydes).  相似文献   

20.
Mechanical properties of dewatered sewage sludge   总被引:1,自引:0,他引:1  
The mechanical properties of dewatered, anaerobically digested sewage sludge were determined from soil laboratory tests. The sludge material is largely composed of organic clay sized-particles, a sizable fraction of which is in an active state of biological digestion which can continue over many years under field conditions. Moderately digested sludge material was found to have a typical specific gravity of solids value of 1.55, and loss on ignition (LOI) value of 70% dry mass. Strongly digested sludge, produced by digesting the liquid sludge further at 35 degrees C in the laboratory, was found to have a lower LOI value of 55% dry mass, and a higher specific gravity of solids value of about 1.72. The maximum dry density of 0.56 tonne/m3 for the dried sludge material was produced using standard Proctor compaction at roughly 85% moisture content (54% solids content). Air-dried, compacted sludge material was tested in quick-undrained triaxial compression and vane shear. Undrained shear strength-moisture content plots are presented. Shear strength values measured in triaxial compression and vane shear were consistent. The effective angle of shearing resistance (phi') was determined from consolidated-undrained, triaxial compression tests on pasteurized, normally consolidated samples of the sludge material. The mechanical properties of the sludge material changed with the level of sludge digestion. The phi' value increased from 32 degrees for moderately digested sludge, to 37 degrees for strongly digested sludge. The effective cohesion of the sludge material remained zero throughout. The shrinkage, swelling and adhesion properties of the sludge material were also studied. Significant shrinkage occurred as the compacted material dried. The sludge material lost its adhesion below about 95% moisture content (51% solids content). Re-hydration of the dry material caused the bulk volume to double.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号