首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
国土空间规划对新时期流域水环境保护意义重大。本文结合国土空间规划对流域水环境影响的全过程(污染产生—污染排放—污染入河)机制,构建了国土空间规划视角下流域水环境变化评估指标体系和框架。以长春市第二松花江流域为例,利用系统动力学模型和一维水动力模型QUAL2K量化了国土空间规划对流域水环境的影响。结果表明,到国土空间规划近期目标年(2025年),流域水环境状况良好,体现为流域大部分河段COD和NH3-N达标,水环境容量最小为44.96 kg/d和5.10 kg/d。国土空间规划中的总量目标、环保设施建设和相关布局的实施将会使COD和NH3-N污染产生量降低52.61%和14.16%;污染排放量降低26.45%和59.09%;水环境容量增加10.68%和57.17%。总体而言,国土空间规划对流域水环境改善潜力巨大,同时改善潜力因不同区域、污染源、污染物而异。本研究提出的评估框架为国土空间规划背景下流域水环境保护提供了思路。  相似文献   

2.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

3.
Best management practices (BMPs) are widely used to mitigate impacts of increased impervious surfaces on stormwater runoff. However, there is limited detailed and up‐to‐date information available on the cost of designing, constructing, and maintaining BMPs over their lifetime. The objective of this study is to analyze BMPs recently constructed by the Virginia Department of Transportation (VDOT) to quantify their total cost per pound of phosphorus removed annually. A motivating factor for the study is recent changes to regulatory guidelines in Virginia which allow for full or partial substitution of purchased nutrient credits in lieu of constructing onsite BMPs to achieve compliance with stormwater quality regulations. Results of the analysis of nine BMPs found their cost ranged from $20,100 to $74,900, in 2014 dollars, per pound ($44,313‐$165,126 per kg) of phosphorus removed. Based on these results and assuming current credit prices procured by VDOT, purchasing nutrient credits is a cost‐effective option for the agency, especially when factoring in the cost of additional right of way for the BMP. Based on this finding, we expect compliance with stormwater quality regulations through credit purchases to become more widely used in Virginia. Moving forward, we suggest more direct tracking of BMP costs to support comparisons between BMP costs across a range of types and conditions to credit purchases for meeting stormwater regulations.  相似文献   

4.
A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.  相似文献   

5.
6.
In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.  相似文献   

7.
In the Mississippi River Basin (MRB), practices that enhance drainage (e.g., channelization, tile drainage) are necessary management tools in order to maintain optimal agricultural production in modern farming systems. However, these practices facilitate, and may speed the delivery of excess nutrients and sediments to downstream water bodies via agricultural streams and ditches. These nonpoint sources contribute to elevated nutrient loading in the Gulf of Mexico, which has been linked to widespread hypoxia and associated ecological and economic problems. Research suggests agricultural drainage ditches are important links between farm fields and downstream ecosystems, and application of new management practices may play an important role in the mitigation of water quality impairments from agricultural watersheds. In this article, we describe how researchers and producers in the MRB are implementing and validating novel best management practices (BMPs) that if used in tandem could provide producers with continued cropping success combined with improved environmental protection. We discuss three BMPs — low‐grade weirs, slotted inlet pipes, and the two‐stage ditch. While these new BMPs have improved the quality of water leaving agricultural landscapes, they have been validated solely in isolation, at opposite ends of the MRB. These BMPs have similar function and would greatly benefit from stacked incorporation across the MRB to the benefit of the basin as a whole.  相似文献   

8.
Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time climate extremes have increased in frequency and intensity. We review >200 studies of hydrologic and gaseous fluxes and show how the interaction between land use and climate variability alters magnitude and frequency of carbon, nutrient, and greenhouse gas pulses in watersheds. Agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Organic carbon concentrations/exports increase and organic carbon quality changes with runoff. Nitrogen and phosphorus exports increase during floods (sometimes by an order of magnitude) and decrease during droughts. Relationships between annual runoff and nitrogen and phosphorus exports differ across land use. CH4 and N2O pulses in riparian zones/floodplains predominantly increase with: flooding, warming, low oxygen, nutrient enrichment, and organic carbon. CH4, N2O, and CO2 pulses in streams/rivers increase due to similar factors but effects of floods are less known compared to base flow/droughts. Emerging questions include: (1) What factors influence lag times of contaminant pulses in response to extreme events? (2) What drives resistance/resilience to hydrologic and gaseous pulses? We conclude with eight recommendations for managing watershed pulses in response to interactive effects of land use and climate change.  相似文献   

9.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

10.
/ The preparation of landslide maps is an important step in any landslide hazard assessment. Landslides maps are prepared around the world, but little effort is made to assess their reliability, outline their main characteristics, and pinpoint their limitations. In order to redress this imbalance, the results of a long-term research project in the Upper Tiber River basin in central Italy are used to compare reconnaissance and detailed landslide inventory maps, statistical and geomorphologically based density maps, and landslide hazard maps obtained by multivariate statistical modeling. An attempt is made to discuss advantages and limitations of the available maps, outlining possible applications for decision-makers, land developers, and environmental and civil defence agencies. The Tiber experiment has confirmed that landslides can be cost-effectively mapped by interpreting aerial photographs coupled with field surveys and that errors and uncertainties associated with the inventory can be quantified. The experiment has shown that GIS makes it easy to prepare landslide density maps and facilitates the production of statistically based landslide hazard models. The former supply an overview of the distribution of landslides that is easily comprehended but do not provide insight on the causes of instability. The latter, giving insight into the causes of instability, are diagnostically powerful, but are difficult to prepare and exploit.  相似文献   

11.
In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate univariate relationships between altered flows and ecology within the UTRB. By comparison, we constructed multivariate models to determine improvements in predictive capacity with the addition of non-flow variables. We then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not suggest that univariate relationships between flow and ecology (step 4, ELOHA process) can produce results sufficient to guide flow restoration in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted 4 years after restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.  相似文献   

12.
Land use and land cover change (LUCC) is an acknowledged cause of the current biodiversity crisis, but the link between LUCC and biodiversity conservation remains largely unknown at the regional scale, especially due to the traditional lack of consistent biodiversity data. We provide a methodological approach for assessing this link through defining a set of major pressures on biodiversity from LUCC and evaluating their extent, distribution, and association with a set of physical factors. The study was performed in the Metropolitan Region of Barcelona (MRB, NE of Spain) between 1956 and 2000. We generated a LUCC map for the time period, which was reclassified into a set of pressures on biodiversity (forestation, deforestation, crop abandonment, and urbanization). We then explored the association of these pressures with a set of physical factors using redundancy analysis (RDA). Pressures encompassed 38.8 % of the MRB area. Urbanization and forestation were the dominating pressures, followed by crop abandonment and deforestation. RDA showed a significant distribution gradient of these pressures in relation to the studied physical factors: while forestation and deforestation are concentrated in remote mountain areas, urbanization mainly occurs in lowlands and especially on the coast, and close to previous urban centers and roads. Unchanged areas are concentrated in rainy and relatively remote mountain areas. Results also showed a dramatic loss of open habitats and of the traditional land use gradient, both featuring Mediterranean landscapes and extremely important for their biodiversity conservation. Implications of these results for biodiversity management are finally discussed.  相似文献   

13.
The Household Responsibility System initiated in the late 1970s in China has brought a profound change to its rural economy. The shift from the collective farming system to individual family farms has changed land management. The change, including fertilization and crop systems, may have significant effects on soil quality and agro-environmental sustainability. However, very little research is being carried out on the impact of reformed land tenure systems on the spatial variability of soil nutrients. In this study, geostatistics was applied to analyze changes in the spatial variability of soil organic matter and nutrients in paddy fields in Pinghu County, China after 20 years of land management change. In 1984 and 2002, 617 and 131 locations were selected, respectively, for collecting surface soil samples to analyze soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK). From 1984 to 2002, variability of the SOM and TN changed from strongly to moderately spatial-dependent, and the variability of AP remained weakly dependent on space, but that of the AK changed from moderately to weakly spatial-dependent. That the trend of the variability of four soil properties in 2002 became weaker than that in 1984 showed that the extrinsic factors (soil management practices, such as fertilization) weakened the effect by intrinsic factors (soil formation factors, such as soil parent materials) owing to a long period of land management change. The temporal geographic maps of the SOM and nutrients spatial distributions suggested that the concentrations of the SOM and nutrients had been changed to different extents during the period. Significant increase in AP and decrease in AK were noted. The changes were likely due to the imbalance between N, P, and K fertilizers and increased grain yield.  相似文献   

14.
15.
16.
Scientists have aimed at exploring land use and land cover change (LUCC) and modeling future landscape pattern in order to improve our understanding of the causes and consequences of these phenomena. This study addresses LUCC in the upper reaches of Minjiang River, China, from 1974 to 2000. Based on remotely sensed images, LUCC and landscape pattern change were assessed using cross-tabulation and landscape metrics. Then, using the CLUE-S model, changes in area of four types of land cover were predicted for two scenarios considering forest polices over the next 20 years. Results showed that forestland decreased from 1974 to 2000 due to continuous deforestation, while grassland and shrubland increased correspondingly. At the same time, the farmland and settlement land increased dramatically. Landscape fragmentation in the study area accompanied these changes. Forestland, grassland, and farmland take opposite trajectories in the two scenarios, as does landscape fragmentation. LUCC has led to ecological consequences, such as biodiversity loss and lowering of ecological carrying capacity.  相似文献   

17.
The innovative approach to the protection and management of water resources at the basin scale introduced by the European Union water framework directive (WFD) requires new scientific tools. WFD implementation also requires the participation of many stakeholders (administrators, farmers and citizens) with the aim of improving the quality of river waters and basin ecosystems through cooperative planning. This approach encompasses different issues, such as agro-ecology, land use planning and water management. This paper presents the results of a methodology suggested for implementing the WFD in the case of the Seveso river contract in Italy, one of the recent WFD applications. The Seveso basin in the Lombardy region has been one of the most rapidly urbanizing areas in Italy over the last 50?years. First, land use changes in the last 50?years are assessed with the use of historical aerial photos. Then, elements of an ecological network along the river corridor are outlined, and different scenarios for enhancing existing ecological connections are assessed using indicators from graph theory. These scenarios were discussed in technical workshops with involved stakeholders of the river contract. The results show a damaged rural landscape, where urbanization processes have decimated the system of linear green features (hedges/rows). Progressive reconnections of some of the identified network nodes may significantly increase the connectivity and circuitry of the study area.  相似文献   

18.
Effective communication is essential to the success of collaborative ecosystem management projects. In this paper, we investigated the dynamics of the Interior Columbia Basin Ecosystem Management Projects (ICBEMP) cross-disciplinary integration process in the assessment phase. Using a case study research design, we captured the rich trail of experience through conducting in-depth interviews and collecting information from internal and public documents, videos, and meetings related to the ICBEMP. Coding and analysis was facilitated by a qualitative analysis software, NVivo. Results include the range of internal perspectives on barriers and facilitators of cross-disciplinary integration in the Science Integration Team (SIT). These are arrayed in terms of discipline-based differences, organizational structures and activities, individual traits of scientists, and previous working relationships. The ICBEMP organization included a team of communication staffs (CT), and the data described the CT as a mixed group in terms of qualifications and educational backgrounds that played a major role in communication with actors external to the ICBEMP organization but a minor one in terms of internal communication. The data indicated that the CT-SIT communication was influenced by characteristics of actors and structures related to organizations and their cultures. We conclude that the ICBEMP members may not have had a sufficient level of shared understanding of central domains, such as the task at hand and ways and timing of information sharing. The paper concludes by suggesting that future ecosystem management assessment teams use qualified communications specialists to design and monitor the development of shared cognition among organization members in order to improve the effectiveness of communication and cross-disciplinary integration.  相似文献   

19.
Abstract: In efforts to control the degradation of water quality in Lake Tahoe, public agencies have monitored surface water discharge and concentrations of nitrogen, phosphorus, and suspended sediment in two separate sampling programs. The first program focuses on 20 watersheds varying in size from 162 to 14,000 ha, with continuous stream gaging and periodic sampling; the second focuses on small urbanized catchments, with automated sampling during runoff events. Using data from both programs, we addressed the questions (1) what are the fluxes and concentrations of nitrogen and phosphorus entering the lake from surface runoff; (2) how do the fluxes and concentrations vary in space and time; and (3) how are they related to land use and watershed characteristics? To answer these questions, we calculated discharge‐weighted average concentrations and annual fluxes and used multiple regression to relate those variable to a suite of GIS‐derived explanatory variables. The final selected regression models explain 47‐62% of the variance in constituent concentrations in the stormwater monitoring catchments, and 45‐72% of the variance in mean annual yields in the larger watersheds. The results emphasize the importance of impervious surface and residential density as factors in water quality degradation, and well‐developed soil as a factor in water quality maintenance.  相似文献   

20.
在考虑绿色发展内涵的基础上,运用SBM-Undesirable模型测度了2006—2018年兰西城市群县域土地利用效率值,并采用泰尔指数、空间自相关方法揭示其时空差异特征。结果表明:①2006—2018年兰西城市群县域土地利用效率稳步提升,区域差异先扩大后缩小。②兰西城市群县域土地利用效率呈现“中部高—外围低、西高东低、南北分异”的空间差异规律,两省域呈现“西—东”的递减规律。③兰西城市群县域土地利用效率空间集聚特征显著,局部范畴上高—高集聚区在中部地区较为典型,低—低集聚区出现由东南向西南的扩散现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号