首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
● EE2 photodegradation behavior in the presence of four WWTPs’ DOM was explored. ● The 3DOM* played a major role in the EE2 photodegradation mediated by WWTPs’ DOM. ● The A2/O process DOM contained more aromatic and oxygen-containing substances. ● Possible photosensitivity sources of DOM in the A2/O process were proposed. Dissolved organic matter (DOM) from each treatment process of wastewater treatment plants (WWTPs) contains abundant photosensitive substances, which could significantly affect the photodegradation of 17α-ethinylestradiol (EE2). Nevertheless, information about EE2 photodegradation behavior mediated by DOM from diverse WWTPs and the photosensitivity sources of such DOM are inadequate. This study explored the photodegradation behavior of EE2 mediated by four typical WWTPs’ DOM solutions and investigated the photosensitivity sources of DOM in the anaerobic-anoxic-oxic (A2/O) process. The parallel factor analysis identified three varying fluorescing components of these DOM, tryptophan-like substances or protein-like substances, microbial humus-like substances, and humic-like components. The photodegradation rate constants of EE2 were positively associated with the humification degree of DOM (P < 0.05). The triplet state substances were responsible for the degradation of EE2. DOM extracted from the A2/O process, especially in the secondary treatment process had the fastest EE2 photodegradation rate compared to that of the other three processes. Four types of components (water-soluble organic matter (WSOM), extracellular polymeric substance, humic acid, and fulvic acid) were separated from the A2/O process DOM. WSOM had the highest promotion effect on EE2 photodegradation. Fulvic acid-like components and humic acid-like organic compounds in WSOM were speculated to be important photosensitivity substances that can generate triplet state substances. This research explored the physicochemical properties and photosensitive sources of DOM in WWTPs, and explained the fate of estrogens photodegradation in natural waters.  相似文献   

2.
● Six largely produced agricultural biomass wastes were pyrolyzed into biochars. ● Feedstock type significantly determined physiochemical properties of biochars. ● The biochars showed powerful adsorption capabilities to Plasticizer DEP. ● Giant reed biochar with higher DEP adsorption was a prominent sorbent. Plastic pollution as a global environmental issue has become a research hotspot, among which the removal of inherent plasticizer (e.g., phthalic acid esters, PAEs) received increasing attention. However, the effects of biochars derived from different feedstocks on the adsorption of PAEs are poorly understood. Thus, the characteristics of biochars derived from six largely produced biomass wastes in China at 400 °C, as well as their performance in adsorption of diethyl phthalate (DEP), one of frequently detected PAEs in aqueous environment, were investigated. The results indicated that the variation in feedstock type showed significant changes in the properties (e.g., porosity, specific surface area, surface functional groups) of biochars, which affected DEP adsorption and desorption. Pseudo-second order and Freundlich models fitted the adsorption data well, and adsorption mechanisms mainly included hydrophobic effect, followed by micropore filling, hydrogen bonding, and π-π EDA interactions. Adsorption thermodynamics revealed that the adsorption was a spontaneous and exothermic the adsorption capacities of DEP on these biochars slightly decreased with the increasing pH but increased with the increasing ionic strength. Among these biochars, the giant reed biochar with relatively higher DEP adsorption and low desorption exhibited the great efficiency for DEP removal as an environment-friendly sorbent. These results highlighted the significant roles of micropore filling and hydrogen bond in determining adsorption capacity of designed biochars prepared from selecting suitable agricultural straws and wetland plant waste to typical plasticizer. The findings are useful for producing designed biochars from different biomass wastes for plasticizer pollution control.  相似文献   

3.
● Coupling merits of SEE and ERH were explored by a laboratory-scale device. ● SEE promotes the soil electrical conductivity and ERH process. ● Preheating soil by ERH improves the soil permeability and SEE. ● Combined method is more energy-efficient for perchloroethylene extraction. In situ thermal desorption (ISTD) technology effectively remediates soil contaminated by dense nonaqueous phase liquids (DNAPLs). However, more efforts are required to minimize the energy consumption of ISTD technology. This study developed a laboratory-scale experimental device to explore the coupling merits of two traditional desorption technologies: steam-enhanced extraction (SEE) and electrical resistance heating (ERH). The results showed that injecting high-density steam (> 1 g/min) into loam or clay with relatively high moisture content (> 13.3%) could fracture the soil matrix and lead to the occurrence of the preferential flow of steam. For ERH alone, the electrical resistance and soil moisture loss were critical factors influencing heating power. When ERH and SEE were combined, preheating soil by ERH could increase soil permeability, effectively alleviating the problem of preferential flow of SEE. Meanwhile, steam injection heated the soil and provided moisture for maintaining soil electrical conductivity, thereby ensuring power stability in the ERH process. Compared with ERH alone (8 V/cm) and SEE alone (1 g/min steam), the energy consumption of combined method in remediating perchloroethylene-contaminated soil was reduced by 39.3% and 52.9%, respectively. These findings indicate that the combined method is more favorable than ERH or SEE alone for remediating DNAPL-contaminated subsurfaces when considering ISTD technology.  相似文献   

4.
● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method. ● The OMS/ZIS exhibits superior photocatalytic H2 evolution for organics degradation. ● A probable mechanism of dual-functional photocatalysis was proposed in detail. ● This work provides an inspiration for rational design of dual-functional catalysts. Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach. In this work, an urchin-like oxygen-doped MoS2/ZnIn2S4 (OMS/ZIS) composite was fabricated for the first time using a simple solvothermal method. The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination. The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light, which was nearly times higher than pristine ZnIn2S4, and the apparent quantum efficiency was 14.9% (420 nm). The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory, resulting in decomposition efficiencies of resorcinol, tetracycline, and bisphenol A that reached 41.5%, 63.5%, and 53.0% after 4 h, respectively, and the highest H2 evolution rate was 672.7 μmol/g/h for bisphenol A. Furthermore, natural organic matter (NOM) abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation, indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition. Moreover, the mechanisms of the dual-purpose photocatalytic reactions, as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail. These obtained results may serve as an inspiration for the rational design of highly efficient, dual-functional photocatalysts in the future.  相似文献   

5.
● The physicochemical and structural properties of DBC were characterized. ● The effects of DBC on DBPs and DBPFP generation during disinfection were evaluated. ● The DBPs and DBPFP generation during chlor(am)ination were compared. Dissolved black carbon (DBC) released from biochar can be one of the potential disinfection by-products (DBPs) precursors in the dissolved organic matter pool. However, the physiochemical and structural properties of DBC and the effects on the development of DBPs and DBP formation potential (DBPFP) during the disinfection process remain unclear. In this study, the characteristics of two kinds of DBC, namely, animal-derived DBC (poultry litter DBC, PL-DBC) and plant-derived DBC (wheat straw DBC, WS-DBC), were investigated. The effects of different kinds of DBC on the evolution of DBPs and DBPFP in chlorine and chloramine disinfection processes were compared with natural organic matter (NOM). The results showed that the total DBPs concentrations derived from PL-DBC, WS-DBC and NOM were similar during chlorination (i.e., 61.23 μg/L, 64.59 μg/L and 64.66 μg/L, respectively) and chloramination (i.e., 44.63 μg/L, 44.42 μg/L and 45.58 μg/L, respectively). The lower total DBPs and DBPFP concentrations in chloramination could be attributed to the fact that the introduction of ammonia in chloramine inhibited the breaking of the bond between the disinfectant and the active group of the precursor. Additionally, DBC presented much lower total DBPFP concentrations than NOM in both chlorination and chloramination. However, both kinds of DBC tended to form more monochloroacetic acids and haloacetamides than NOM, which could result from the higher organic strength, higher protein matter, and nitrogen-rich soluble microbial products of DBC.  相似文献   

6.
● PDA-Fe3O4-Ag was made by hydrothermal and oxidation self-polymerization method. ● PDA-Fe3O4-Ag had great magnetic separation performance. ● PDA-Fe3O4-Ag had good adsorption and degradation performance for ionic dyes. ● PDA-Fe3O4-Ag showed NR and MO degradation potential of 91.2% and 87.5%, respectively. High-performance adsorbents have been well-studied for the removal of organic dye pollutants to promote environment remediation. In this study, an Ag nanoparticle-functionalized Fe3O4-PDA nanocomposite adsorbent (PDA-Fe3O4-Ag) was synthesized, and the adsorption/separation performance of commonly used cationic and anionic organic dyes by the PDA-Fe3O4-Ag adsorbent were assessed. Overall, PDA-Fe3O4-Ag exhibited a significantly higher adsorption capacity for cationic dyes compared to anionic dyes, the highest of which was more than 110.0 mg/g (methylene blue (MB)), which was much higher than not only the adsorption capacities of the anionic dyes in this study but also other dye adsorption capacities reported in the literature. The dye adsorption kinetics data fitted well to both the pseudo second-order kinetics model and the Langmuir isotherm model, suggesting a monolayer-chemisorption-dominated adsorption mode. Thermodynamics analysis indicated that the adsorption process was both endothermic and spontaneous. Furthermore, the PDA-Fe3O4-Ag adsorbent achieved high photodegradation removal rates of the dyes, especially neutral red (NR) and methyl orange (MO), which were 91.2% and 87.5%, respectively. With the addition of PDA-Fe3O4-Ag, the degradation rate constants of NR and MO increased from 0.08 × 10−2 and 0 min−1 to 2.11 × 10−2 and 1.73 × 10−2 min−1, respectively. The high adsorption and photocatalytic degradation performance of the PDA-Fe3O4-Ag adsorbent make it an excellent candidate for removing cationic and anionic dyes from the industrial effluents.  相似文献   

7.
● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer. ● Ultra-fast degradation of micropollutants were achieved in KMnO4/CNT system. ● CNT mediated electron transfer process from electron-rich molecules to KMnO4. ● Electron transfer dominated organic degradation. Numerous reagents have been proposed as electron sacrificers to induce the decomposition of permanganate (KMnO4) by producing highly reactive Mn species for micropollutants degradation. However, this strategy can lead to low KMnO4 utilization efficiency due to limitations associated with poor mass transport and high energy consumption. In the present study, we rationally designed a catalytic carbon nanotube (CNT) membrane for KMnO4 activation toward enhanced degradation of micropollutants. The proposed flow-through system outperformed conventional batch reactor owing to the improved mass transfer via convection. Under optimal conditionals, a > 70% removal (equivalent to an oxidation flux of 2.43 mmol/(h·m2)) of 80 μmol/L sulfamethoxazole (SMX) solution can be achieved at single-pass mode. The experimental analysis and DFT studies verified that CNT could mediate direct electron transfer from organic molecules to KMnO4, resulting in a high utilization efficiency of KMnO4. Furthermore, the KMnO4/CNT system had outstanding reusability and CNT could maintain a long-lasting reactivity, which served as a green strategy for the remediation of micropollutants in a sustainable manner. This study provides new insights into the electron transfer mechanisms and unveils the advantages of effective KMnO4 utilization in the KMnO4/CNT system for environmental remediation.  相似文献   

8.
● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm). ● Enhancement factor of V-shaped substrate can reach 20 in microplastics detection. ● V-shaped nanopore array can bring additional volume enhancement. ● V-shaped substrate was more economic in application compared to Klarite substrate. Research on the microplastics (MPs) is developing towards smaller size, but corresponding methods for the rapid and accurate detection of microplastics, especially nanoplastics still present challenge. In this work, a novel surface and volume enhanced Raman spectroscopy substrate was developed for the rapid detection of microplastic particles below 5 μm. The gold nanoparticles (NPs) were deposited onto the surface and into the V-shaped nanopores of anodized aluminum oxide (AAO) through magnetron sputtering or ion sputtering, and then AuNPs@V-shaped AAO SERS substrate was obtained and studied for microplastic detection. SERS performance of AuNPs@V-shaped AAO SERS substrate was evaluated through the detection of polystyrene and polymethyl methacrylate microspheres. Results indicated that individual polystyrene sphere with a diameter of 1 μm can be well detected on AuNPs@V-shaped AAO SERS substrate, and the maximum enhancement factor (EF) can reach 20. In addition, microplastics in ambient atmospheric samples were collected and tested to verify the effectiveness of the AuNPs@V-shaped AAO SERS substrate in the real environment. This study provides a rapid, economic and simple method for detecting and identifying microplastics with small size.  相似文献   

9.
● Application of the MOF-composite membranes in adsorption was discussed. ● Recent application of MOFs-membranes for separation was summarized. ● Separation and degradation for emerging organic contaminants were described. Presence of emerging organic contaminants (EOCs) in water is one of the major threats to water safety. In recent decades, an increasing number of studies have investigated new approaches for their effective removal. Among them, metal-organic frameworks (MOFs) have attracted increasing attention since their first development thanks to their tunable metal nodes and versatile, functional linkers. However, whether or not MOFs have a promising future for practical application in emerging contaminants-containing wastewater is debatable. This review summarizes recent studies about the removal of EOCs using MOFs-related material. The synthesis strategies of both MOF particles and composites, including thin-film nanocomposite and mixed matrix membranes, are critically reviewed, as well as various characterization technologies. The application of the MOF-based composite membranes in adsorption, separation (nanofiltration and ultrafiltration), and catalytic degradation are discussed. Overall, literature survey shows that MOFs-based composite could play a crucial role in eliminating EOCs in the future. In particular, modified membranes that realize separation and degradation might be the most promising materials for such application.  相似文献   

10.
● Electroconductive RGO-MXene membranes were fabricated. ● Wettable membrane channels were established between RGO and MXene nanosheets. ● Hydrophilic MXene reduces the resistance of water entering the membrane channels. ● Water permeance of RGO-MXene membrane is 16.8 times higher than that of RGO membrane. ● Electro-assistance can enhance the dye rejection performance of RGO-MXene membrane. Reduced graphene oxide (RGO) membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide (GO) membranes, as they have fewer oxygen-containing functional groups and more non-oxidized regions. However, the weak hydrophilicity of RGO membranes inhibits water entry into their channels, resulting in their low water permeability. In this work, we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance. The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m2·h·bar), approximately 16.8 times that of the RGO membrane (3.7 L/(m2·h·bar)). Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGO-MXene channels. Benefiting from good conductivity, the RGO-MXene membrane with electro-assistance exhibits significantly increased rejection rates for negatively charged dyes (from 56.0% at 0 V to 91.4% at 2.0 V for Orange G) without decreasing the permeate flux, which could be attributed to enhanced electrostatic repulsion under electro-assistance.  相似文献   

11.
● Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system. ● The system including hydrothermal CO2 reduction with Fe and Fe recovery by biomass. ● The reduction potential quantified by experiments, simulations, and an ex-ante LCA. ● The greatest GHG reduction potential is −34.03 kg CO2-eq/kg absorbed CO2. ● Ex-ante LCA supports process optimization to maximize GHG reduction potential. CO2 utilization becomes a promising solution for reducing anthropogenic greenhouse gas (GHG) emissions. Biomass-based CO2 utilization (BCU) even has the potential to generate negative emissions, but the corresponding quantitative evaluation is limited. Herein, the biomass-based CO2 utilization with an iron cycle (BCU-Fe) system, which converts CO2 into formate by Fe under hydrothermal conditions and recovers Fe with biomass-derived glycerin, was investigated. The GHG reduction potential under various process designs was quantified by a multidisciplinary method, including experiments, simulations, and an ex-ante life-cycle assessment. The results reveal that the BCU-Fe system could bring considerable GHG emission reduction. Significantly, the lowest value is −34.03 kg CO2-eq/kg absorbed CO2 (−2.44 kg CO2-eq/kg circulated Fe) with the optimal yield of formate (66%) and Fe (80%). The proposed ex-ante evaluation approach not only reveals the benefits of mitigating climate change by applying the BCU-Fe system, but also serves as a generic tool to guide the industrialization of emerging carbon-neutral technologies.  相似文献   

12.
● Different advanced treatment processes were tested for ECs removal from wastewater. ● UV radiation showed low to moderate removal for 5 of the 38 micropollutants. ● Among tested membrane processes, nanofiltration showed the better performance. ● The use of PAC achieved high or partially removal for 31 out of the 38 compounds. ● The environmental and economical evaluation of a pilot-scale PAC unit is suggested. In this work, 38 different organic emerging contaminants (ECs), belonging to various chemical classes such as pharmaceuticals (PhCs), endocrine-disrupting chemicals (EDCs), benzotriazoles (BTRs), benzothiazoles (BTHs), and perfluorinated compounds (PFCs), were initially identified and quantified in the biologically treated wastewater collected from Athens’ (Greece) Sewage Treatment Plant (STP). Processes already used in existing STPs such as microfiltration (MF), nanofiltration (NF), ultrafiltration (UF), UV radiation, and powdered activated carbon (PAC) were assessed for ECs’ removal, under the conditions that represent their actual application for disinfection or advanced wastewater treatment. The results indicated that MF removed only one out of the 38 ECs and hence it was selected as pretreatment step for the other processes. UV radiation in the studied conditions showed low to moderate removal for 5 out of the 38 ECs. NF showed better results than UF due to the smaller pore sizes of the filtration system. However, this enhancement was observed mainly for 8 compounds originating from the classes of PhCs and PFCs, while the removal of EDCs was not statistically significant. Among the various studied technologies, PAC stands out due to its capability to sufficiently remove most ECs. In particular, removal rates higher than 70% were observed for 9 compounds, 22 were partially removed, while 7 demonstrated low removal rates. Based on our screening experiments, future research should focus on scaling-up PAC in actual conditions, combining PAC with other processes, and conduct a complete economic and environmental assessment of the treatment.  相似文献   

13.
● Recent advances in the electrochemical decontamination of PFAS are reviewed. ● Underlying mechanisms and impacting factors of these processes are discussed. ● Several novel couped systems and electrode materials are emphasized. ● Major knowledge gaps and research prospects on PFAS removal are identified. Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.  相似文献   

14.
● Terminal carboxylate group activation is PFOA degradation’s rate-limiting step. ● Bi3O(OH)(PO4)2 with surface frustrated Lewis pairs (SFLPs) efficiently degrade PFOA. ● Photo-induced Lewis acidic sites and proximal surface hydroxyls constitute SFLPs. ● SFLPs act as collection centers to effectively adsorb PFOA. ● SFLPs endow accessible pathways for photogenerated holes rapid transfer to PFOA. Heterogeneous photocatalysis has gained substantial research interest in treating per- and polyfluoroalkyl substances (PFAS)-contaminated water. However, sluggish degradation kinetics and low defluorination efficiency compromise their practical applications. Here, we report a superior photocatalyst, defected Bi3O(OH)(PO4)2, which could effectively degrade typical PFAS, perfluorooctanoic acid (PFOA), with high defluorination efficiency. The UV light irradiation could in situ generate oxygen vacancies on Bi3O(OH)(PO4)2 through oxidation of the lattice hydroxyls, which further promotes the formation of Lewis acidic coordinately unsaturated bismuth sites. Then, the Lewis acidic sites couple with the proximal surface hydroxyls to constitute the surface frustrated Lewis pairs (SFLPs). With the in-depth spectroscopic analysis, we revealed that the photo-induced SFLPs act as collection centers to effectively adsorb PFOA and endow accessible pathways to transfer photogenerated holes to PFOA rapidly. Consequently, activation of the terminal carboxyl, a rate-limiting step for PFOA decomposition, could be easily achieved over the defected Bi3O(OH)(PO4)2 photocatalyst. These results suggest that SFLPs exhibit great potential in developing highly efficient photocatalysts to degrade persistent organic pollutants.  相似文献   

15.
● A method based on ATR-FTIR and ML was developed to predict CHNS contents in waste. ● Feature selection methods were used to improve models’ prediction accuracy. ● The best model predicted C, H, and N contents with accuracy R 2 ≥ 0.93, 0.87, 0.97. ● Some suitable models showed insensitivity to spectral noise. ● Under moisture interference, the models still had good prediction performance. Elemental composition is a key parameter in solid waste treatment and disposal. This study has proposed a method based on infrared spectroscopy and machine learning algorithms that can rapidly predict the elemental composition (C, H, N, S) of solid waste. Both noise and moisture spectral interference that may occur in practical application are investigated. By comparing two feature selection methods and five machine learning algorithms, the most suitable models are selected. Moreover, the impacts of noise and moisture on the models are discussed, with paper, plastic, textiles, wood, and leather as examples of recyclable waste components. The results show that the combination of the feature selection and K-nearest neighbor (KNN) approaches exhibits the best prediction performance and generalization ability. Particularly, the coefficient of determination (R2) of the validation set, cross validation and test set are higher than 0.93, 0.89, and 0.97 for predicting the C, H, and N contents, respectively. Further, KNN is less sensitive to noise. Under moisture interference, the combination of feature selection and support vector regression or partial least-squares regression shows satisfactory results. Therefore, the elemental compositions of solid waste are quickly and accurately predicted under noise and moisture disturbances using infrared spectroscopy and machine learning algorithms.  相似文献   

16.
● This study explored the long-term association by double robust additive models. ● Individual exposure concentrations were assessed by integrating GAM, LUR and BPNN. ● PM2.5, SO2 and NO2 are positively associated with cerebrovascular disease. ● CO could reduce the risk of cerebrovascular disease with the highest robustness. ● The elderly, women and people with normal BMI are at higher risk for air pollution. The relationship between air pollution and cerebrovascular disease has become a popular topic, yet research findings are highly heterogeneous. This study aims to investigate this association based on detailed individual health data and a precise evaluation of their exposure levels. The integrated models of generalized additive model, land use regression model and back propagation neural network were used to evaluate the exposure concentrations. And doubly robust additive model was conducted to explore the association between cerebrovascular disease and air pollution after adjusted for demographic characteristics, physical examination, disease information, geographic and socioeconomic status. A total of 25097 subjects were included in the Beijing Health Management Cohort from 2013 to 2018. With a 1 μg/m3 increase in the concentrations of PM2.5, SO2 and NO2, the incidence risk of cerebrovascular disease increased by 1.02 (95% CI: 1.008–1.034), 1.06 (95% CI: 1.034–1.095) and 1.02 (95% CI: 1.010–1.029) respectively. Whereas CO exposure could decrease the risk, with an odds ratio of 0.38 (95% CI: 0.212–0.626). In the subgroup analysis, individuals under the age of 50 with normal BMI were at higher risk caused by PM2.5, and SO2 was considered more hazardous to women. Meanwhile, the protective effect of CO on women and those with normal BMI was stronger. Successful reduction of long-term exposure to PM2.5, SO2 and NO2 would lead to substantial benefits for decrease the risk of cerebrovascular disease especially for the health of the susceptible individuals.  相似文献   

17.
● Methods for estimating the aging of environmental micro-plastics were highlighted. ● Aging pathways & characterization methods of microplastics were related and reviewed. ● Possible approaches to reduce the contamination of microplastics were proposed. ● The prospect and deficiency of degradable plastics were analyzed. With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.  相似文献   

18.
● A novel Al-MOF was successfully synthesized by a facile solvothermal method. ● Al-MOF showed superior performance for phosphate detection. ● High selectivity and anti-interference for detection were demonstrated. ● The high coordination between Al-O and PO43− was the key in fluorescence sensing. The on-site monitoring of phosphate is important for environmental management. Conventional phosphate detection methods are not appropriate to on-site monitoring owing to the use of complicated detection procedures, and the consequent high cost and maintenance requirements of the detection apparatus. Here, a highly sensitive fluorescence-based method for phosphate detection with a wide detection range was developed based on a luminescent aluminum-based metal-organic framework (Al-MOF). The Al-MOF was prepared by introducing amine functional groups to conventional MIL to enhance phosphate binding, and exhibited excellent fluorescence properties that originated from the ligand-to-metal charge transfer (LMCT). The detection limit was as low as 3.25 μmol/L (0.10 mg/L) and the detection range was as wide as 3–350 μmol/L (0.10–10.85 mg/L). Moreover, Al-MOF displayed specific recognition toward phosphate over most anions and metal cations, even for a high concentration of the co-existent ions. The mechanism of phosphate detection was analyzed through the characterization of the combination of Al-MOF and phosphate, and the results indicated the high affinity between Al-O and phosphate inhibited that the LMCT process and recovered the intrinsic fluorescence of NH2-H2BDC. The recovery of the developed detection method reached a satisfactory range of 85.1%–111.0%, and the feasibility of on-site phosphate detection was verified using a prototype sensor for tap water and lake water samples. It was demonstrated that the prepared Al-MOF is highly promising for on-site detection of phosphate in an aqueous environment.  相似文献   

19.
● Decentralized composting (DC) is a profitable KW treating technology. ● SAC and BEC were economically attractive in rural area, while HDC was unprofitable. ● KW handling subsidy plays a vital role in making DC profitable. ● SAC and BEC have great potential in promoting rural KW treatment. This study was designed to evaluate whether the decentralized rural kitchen waste (KW) composting technologies used in China can be widely applied. To this end, we completed a techno-economic analysis of three typical types of KW compositing, namely solar-assisted (SAC), bio-enhanced (BEC), and heat-dewatering composting (HDC). These evaluations revealed that all three technologies produce composting products that meet China’s organic fertilizer standard and that both SAC and BEC are economically self-sustaining and generate net profits (18824.94 and 17791.52 US$/a) and positive net present values (32133.11 and 25035.93 US$). Subsequent sensitivity analysis demonstrated that the KW-handling subsidy plays a critical role in making decentralized composting economically attractive. Based on these analyses, we believe that reducing the coverage area of SAC, reducing the operating cost of BEC and HDC, upgrading composting products, and strengthening secondary pollution control would aid in supporting the technological improvement of these processes. Moreover, providing appropriate subsidies and promulgating specific standards and policies for KW fertilizer are key strategies for decentralized rural KW composting management.  相似文献   

20.
● The availability of PD-anammox was investigated with higher NO3–N concentration. ● NO3–N concentration affects NO3–N accumulation during denitrification. ● COD concentration is determinant for N removal pathways in PD-anammox process. ● The synergy/competition mechanisms between denitrifiers and anammox was explored. Partial denitrification-anammox (PD-anammox) is an innovative process to remove nitrate (NO3–N) and ammonia (NH4+–N) simultaneously from wastewater. Stable operation of the PD-anammox process relies on the synergy and competition between anammox bacteria and denitrifiers. However, the mechanism of metabolic between the functional bacteria in the PD-anammox system remains unclear, especially in the treatment of high-strength wastewater. The kinetics of nitrite (NO2–N) accumulation during denitrification was investigated using the Michaelis-Menten equation, and it was found that low concentrations of NO3–N had a more significant effect on the accumulation of NO2–N during denitrification. Organic matter was a key factor to regulate the synergy of anammox and denitrification, and altered the nitrogen removal pathways. The competition for NO2–N caused by high COD concentration was a crucial factor that affecting the system stability. Illumina sequencing techniques demonstrated that excess organic matter promoted the relative abundance of the Denitratesoma genus and the nitrite reductase gene nirS, causing the denitrifying bacteria Denitratisoma to compete with Cadidatus Kuenenia for NO2–N, thereby affecting the stability of the system. Synergistic carbon and nitrogen removal between partial denitrifiers and anammox bacteria can be effectively achieved by controlling the COD and COD/NO3–N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号