首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
• Distribution of ARGs in decentralized sewage facilities were investigated. • Bacitracin-ARGs were most predominant ARGs in rural wastewater. • ARGs were identified in bacterial and viral community. • ARGs of rpoB, drfE, gyrA and parC were both correlated with bacteria and phages. • More attention should be paid to the risk of spreading ARG by phages. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG’s proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary.  相似文献   

2.
• Retrofitting from CAS to MBR increased effluent quality and environmental benefits. • Retrofitting from CAS to MBR increased energy consumption but not operating cost. • Retrofitting from CAS to MBR increased the net profit and cost efficiency. • The advantage of MBR is related to the adopted effluent standard. • The techno-economy of MBR improves with stricter effluent standards. While a growing number of wastewater treatment plants (WWTPs) are being retrofitted from the conventional activated sludge (CAS) process to the membrane bioreactor (MBR) process, the debate on the techno-economy of MBR vs. CAS has continued and calls for a thorough assessment based on techno-economic valuation. In this study, we analyzed the operating data of 20 large-scale WWTPs (capacity≥10000 m3/d) and compared their techno-economy before and after the retrofitting from CAS to MBR. Through cost-benefit analysis, we evaluated the net profit by subtracting the operating cost from the environmental benefit (estimated by the shadow price of pollutant removal and water reclamation). After the retrofitting, the removal rate of pollutants increased (e.g., from 89.0% to 93.3% on average for NH3-N), the average energy consumption increased from 0.40 to 0.57 kWh/m3, but the operating cost did not increase significantly. The average marginal environmental benefit increased remarkably (from 0.47 to 0.66 CNY/g for NH3-N removal), leading to an increase in the average net profit from 19.4 to 24.4 CNY/m3. We further scored the technical efficiencies via data envelopment analysis based on non-radial directional distance functions. After the retrofitting, the relative cost efficiency increased from 0.70 to 0.73 (the theoretical maximum is 1), while the relative energy efficiency did not change significantly. The techno-economy is closely related to the effluent standard adopted, particularly when truncating the extra benefit of pollutant removal beyond the standard in economic modeling. The modeling results suggested that MBR is more profitable than CAS given stricter effluent standards.  相似文献   

3.
• MPs were analyzed throughout three WWTPs with mixed domestic–industrial influents. • White polyethylene granules from plastic manufacturing were the most dominant MPs. • MPs abundance in random grab-sampling was lower than that in daily dense sampling. • The production of MPs such as microbeads need to be restricted from the source. In wastewater treatment plants (WWTPs), microplastics (MPs) are complex, especially with mixed domestic–industrial influents. Conventional random grab sampling can roughly depict the distribution and characteristics of MPs but can not accurately reflect their daily fluctuations. In this study, the concentration, shape, polymer type, size, and color of MPs were analyzed by micro-Raman spectroscopy (detection limit of 0.05 mm) throughout treatment stages of three mixed domestic–industrial WWTPs (W1, W2, and W3) in Wuxi City, China, and the daily fluctuations of MPs were also obtained by dense grab sampling within 24 h. For influent samples, the average MP concentration of 392.2 items/L in W1 with 10% industrial wastewater was much higher than those in W2 (71.2 items/L with 10% industrial wastewater) and W3 (38.3 items/L with 60% industrial wastewater). White polyethylene granules with a diameter less than 0.5 mm from plastic manufacturing were the most dominant MPs in the influent of W1, proving the key role of industrial sources in MPs pollution. In addition, the daily dense sampling results showed that MP concentration in W1 influent fluctuated widely between 29.1 items/L and 4617.6 items/L within a day. Finally, few MPs (less than 4.0 items/L) in these WWTPs effluents were attributed to the effective removal of wastewater treatment processes. Thus, further attention should be paid to regulating the primary sources of MPs.  相似文献   

4.
• A full scale biofilm process was developed for typical domestic wastewater treatment. • The HRT was 8 h and secondary sedimentation tank was omitted. Candidatus Brocadia were enriched in the HBR with an abundance of 2.89%. • Anammox enabled a stable ammonium removal of ~15% in the anoxic zone. The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems. Herein, a 300 m3/d hybrid biofilm reactor (HBR) process was developed and operated with a short hydraulic retention time (HRT) of 8 h. The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process. The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33% at Day 130 and then to 2.89% at Day 213. Based upon the activity of anammox bacteria, the removal of ammonia nitrogen (NH4+-N) in the anoxic zone was approximately 15%. This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone. The final effluent contained 12 mg/L chemical oxygen demand (COD), 0.662 mg/L NH4+-N, 7.2 mg/L total nitrogen (TN), and 6 mg/L SS, indicating the effectiveness of the HBR process for treating real domestic wastewater.  相似文献   

5.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   

6.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

7.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

8.
• Framework of indicators was established based on energy efficiency and recovery. • Energy neutrality potential of 970 wastewater treatment plants was evaluated. • Analysis of characteristics and explanatory factors was carried out. • Pathways for improving the energy neutrality potential were proposed. Wastewater treatment plants (WWTPs) consume large amounts of energy and emit greenhouse gases to remove pollutants. This study proposes a framework for evaluating the energy neutrality potential (ENP) of WWTPs from an integrated perspective. Operational data of 970 WWTPs in the Yangtze River Economic Belt (YREB) were extracted from the China Urban Drainage Yearbook 2018. The potential chemical and thermal energies were estimated using combined heat and power (CHP) and water source heat pump, respectively. Two key performance indicators (KPIs) were then established: the energy self-sufficiency (ESS) indicator, which reflects the offset degree of energy recovery, and the comprehensive water–energy efficiency (CWEE) indicator, which characterizes the efficiency of water–energy conversion. For the qualitative results, 98 WWTPs became the benchmark (i.e., CWEE= 1.000), while 112 WWTPs were fully self-sufficient (i.e., ESS≥100%). Subsequently, four types of ENP were classified by setting the median values of the two KPIs as the critical value. The WWTPs with high ENP had high net thermal energy values and relatively loose discharge limits. The explanatory factor analysis of water quantity and quality verified the existence of scale economies. Sufficient carbon source and biodegradability condition were also significant factors. As the CWEE indicator was mostly sensitive to the input of CHP, future optimization shall focus on the moisture and organic content of sludge. This study proposes a novel framework for evaluating the ENP of WWTPs. The results can provide guidance for optimizing the energy efficiency and recovery of WWTPs.  相似文献   

9.
• Quantitative global ARGs profile in dialysis water was investigated. • Totally 35 ARGs were found in the dialysis treatment train. • 29 ARGs (highest) were found in carbon filtration effluent. erm and mtrD-02 occurred in the final effluent. • The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks.  相似文献   

10.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   

11.
• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs. • Coupled DNRA/anammox and NOx-DAMO/anammox/comammox processes are demonstrated. • Substrate level, SRT and stressors determine the niches of overlooked microbes. • Applications of overlooked microbes in enhancing nitrogen removal are promising. Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria, heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that are less abundant but functionally important in wastewater nitrogen removal. These microbes include, but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox) bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of high-throughput molecular technologies has enabled the detection, quantification, and characterization of these minor populations. The aim of this review is therefore to synthesize the current knowledge on the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes from microbiology, ecology, and engineering perspectives will facilitate the design and operation of more efficient and sustainable biological nitrogen removal processes.  相似文献   

12.
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   

13.
•PSBF performed better than PAC and PAM in CODCr removals. •PSBF was more insensitive to changing pH than PAC and PAM. •PAC could remove humic acid-like pollutants and dye particles. •PSBF was efficient in removing tryptophan-like pollutants from PPDW. •A secondary coagulation-flocculation process (PAC→PSBF) is proposed here. In our previous studies, several papermaking sludge-based flocculants (PSBFs) were synthesized from wood pulp papermaking sludge. The structure-activity relationships of the PSBFs have been investigated in simulated dye wastewater treatment, but their efficiencies in practical printing and dyeing wastewater (PPDW) treatment are unknown. Herein, an PSBF was prepared, and its performance is discussed in comparison to polyaluminium chloride (PAC) and polyacrylamide (PAM) in PPDW treatment. The PSBF was used in three ways: as an independent flocculant, as a PAC aid, or used to treat the effluent of the PAC system. The results indicated that adding PSBF alone produced similar color and chemical oxygen demand (CODCr) removals as the PAC system alone, but PSBF performed better than PAC when the pH of PPDW was higher than 7.0. Adding PSBF as a PAC aid improved the color, CODCr and turbidity removals, but the elimination efficiencies were slightly lower than those of the PAC+ PAM system. However, when PSBF was used as a flocculant to treat the effluent of the PAC system (PAC→PSBF), the effluent qualities were enhanced. Compared with the PAC system, the color and CODCr removals of PAC→PSBF system increased by 16.21% and 13.26%, respectively. The excitation and emission matrix fluorescence results indicated that PSBF removed tryptophan-like pollutants more efficiently than PAC. Considering the pH requirements of the subsequent bioreactor treatment in practice, the PAC→PSBF system were also investigated at the PPDW pH level of 7.0. Its maximum removal efficiencies of color, CODCr and turbidity were 90.17%, 32.60% and 82.50%, respectively.  相似文献   

14.
• Short-term effect of the pyridine exposure on the SAD process was investigated. • The SAA at 150 mg/L pyridine reduced by 56.7% of the maximum value. • Inhibition kinetics models and inhibitory parameters were indicated. • Collaboration of AnAOB, HDB and PDB promoted the SAD. • Possible metabolic pathways of nitrogen and pyridine were proposed. In-depth knowledge on the role of pyridine as a bottleneck restricting the successful application of anammox-based process treating refractory coking wastewater remains unknown. In this study, the effect of short-term pyridine addition on a simultaneous anammox and denitrification (SAD) system fed with 25–150 mg/L pyridine was explored. The short-term operation showed that the highest total nitrogen (TN) removal efficiency was achieved at 25–50 mg/L of pyridine. As the pyridine addition increased, the contribution of the anammox pathway in nitrogen removal decreased from 99.3% to 79.1%, while the denitrification capability gradually improved. The specific anammox activity (SAA) at 150 mg/L pyridine decreased by 56.7% of the maximum SAA. The modified non-competitive inhibition model indicated that the 50% inhibitory concentration (IC50) of pyridine on anammox was 84.18 mg/L and the substrate inhibition constant (Ki) of pyridine for self-degradation was 135.19 mg/L according to the Haldane model. Moreover, high-throughput sequencing confirmed the abundance of Candidatus Kuenenia as the amount of anammox species decreased, while the amounts of denitrifiers and pyridine degraders significantly increased as the pyridine stress increased. Finally, the possible pathways of nitrogen bioconversion and pyridine biodegradation in the SAD system were elucidated through metagenomic analysis and gas chromatography/mass spectrometry results. The findings of this study enlarge the understanding of the removal mechanisms of complex nitrogenous pyridine-containing wastewater treated by the SAD process.  相似文献   

15.
• PPCPs had the highest removal efficiency in A2O combined with MBR process (86.8%). • ARGs and OPFRs were challenging to remove (6.50% and 31.0%, respectively). • Octocrylene and tris(2-ethylhexyl) phosphate posed high risks to aquatic organisms. • Meta-analysis was used to compare the ECs removal in wastewater treatment. • Membrane treatment technology is the most promising treatment for ECs removal. Reclaimed water has been widely applied in irrigation and industrial production. Revealing the behavior of emerging contaminants in the production process of reclaimed water is the first prerequisite for developing relevant water quality standards. This study investigated 43 emerging contaminants, including 22 pharmaceuticals and personal care products (PPCPs), 11 organophosphorus flame retardants (OPFRs), and 10 antibiotic resistance genes (ARGs) in 3 reclaimed wastewater treatment plants (RWTPs) in Beijing. The composition profiles and removal efficiencies of these contaminants in RWTPs were determined. The results indicated that the distribution characteristics of the different types of contaminants in the three RWTPs were similar. Caffeine, sul2 and tris(1-chloro-2-propyl) phosphate were the dominant substances in the wastewater, and their highest concentrations were 27104 ng/L, 1.4 × 107 copies/mL and 262 ng/L, respectively. Ofloxacin and sul2 were observed to be the dominant substances in the sludge, and their highest concentrations were 5419 ng/g and 3.7 × 108 copies/g, respectively. Anaerobic/anoxic/oxic system combined with the membrane bioreactor process achieved a relatively high aqueous removal of PPCPs (87%). ARGs and OPFRs were challenging to remove, with average removal rates of 6.5% and 31%, respectively. Quantitative meta-analysis indicated that tertiary treatment processes performed better in emerging contaminant removal than secondary processes. Diethyltoluamide exhibited the highest mass load discharge, with 33.5 mg/d per 1000 inhabitants. Octocrylene and tris(2-ethylhexyl) phosphate posed high risks (risk quotient>1.0) to aquatic organisms. This study provides essential evidence to screen high priority pollutants and develop corresponding standard in RWTPs.  相似文献   

16.
• The membrane bioreactor cost decreased by 38.2% by decreasing HRT from 72 h to 36 h. • Capital and operation costs contributed 62.1% and 37.9% to decreased costs. • The membrane bioreactor is 32.6% cheaper than the oxidation ditch for treatment. • The effluent COD also improved from 709.93±62.75 mg/L to 280±17.32 mg/L. • Further treatment also benefited from lower pretreatment investment. A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost. Different hydraulic retention times (72–24 h) were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater. Field experimental data from the membrane bioreactor, both full-scale (500 m3/d) and pilot (1.0 m3/d), were used to calculate the net present value (NPV), incorporating both capital expenditure (CAPEX) and operating expenditure. The results showed that the tank cost was estimated above membrane cost in the membrane bioreactor. The decreased hydraulic retention time from 72 to 36 h reduced the NPV by 38.2%, where capital expenditure contributed 24.2% more than operational expenditure. Tank construction cost was decisive in determining the net present value contributed 62.1% to the capital expenditure. The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane, while flux decline was tolerable. The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent. The upgrade to the membrane bioreactor also benefited further treatments by 10.1%–44.7% lower direct investment.  相似文献   

17.
18.
•Steroid hormones could be removed efficiently from mariculture system using seaweed; Caulerpa lentillifera was the most efficient seaweed for removal of steroid hormones; • More than 90% of E2 or EE2 were removed within 12 h using Caulerpa lentillifera; • The removal included the rapid biosorption and the slow bio-accumulation; •The hormones and nutrients in mariculture wastewater could be simultaneously removed. The removal of steroid hormones from the mariculture system using seaweeds (Caulerpa lentillifera, Ulva pertusa, Gracilaria lemaneiformis, and Codium fragile) was investigated. The results illustrated that both 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) could be removed by the seaweeds at different levels, and the Caulerpa lentillifera was the most efficient one. More than 90% of E2 or EE2 at concentration of 10 μg/L was removed by Caulerpa lentillifera within 12 h. Processes including initial quick biosorption, the following slow accumulation, and biodegradation might explain the removal mechanisms of E2/EE2 by Caulerpa lentillifera. E2/EE2 removal was positively related to the nutrient level and the initial concentration of steroid hormone. A significant linear relationship for E2 and EE2 existed between the initial pollutant concentration and the average removal rate. The highest removal kinetic constant (k) value was obtained at 30°C as 0.34 /h for E2 and at 20°C as 0.28 /h for EE2, demonstrating the promising application potential of Caulerpa lentillifera in the water purification of the industrialized mariculture system with relatively high water temperature. Simultaneous and efficient removal of E2 and EE2 by Caulerpa lentillifera was still achieved after 3 cycles in the pilot-scale experiment. The steroid hormones and nutrients in mariculture wastewater could also be simultaneously removed using Caulerpa lentillifera. These findings demonstrated that Caulerpa lentillifera was the promising seaweed for the removal of steroid hormones in mariculture systems.  相似文献   

19.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

20.
• Diversity and detection methods of pathogenic microorganisms in sludge. • Control performance of sludge treatment processes on pathogenic microorganisms. • Risk of pathogen exposure in sludge treatment and land application. The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号