首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of conserving biological resources in any Biosphere Reserve or protected area depends on the extent of support and positive attitudes and perceptions of local people have towards such establishments. Ignoring the dependence of the local people for their subsistence needs on resources of such areas leads to conflicts between protected area managers and the local inhabitants. Crop yield losses and livestock depredation were serious problems observed in most buffer zone villages of Nanda Devi Biosphere Reserve. In the present study 10 villages situated in the buffer zone of Nanada Devi Biosphere Reserve (1612 km2 area) in Chamoli district of Uttaranchal, India were studied during 1996-97 using a questionnaire survey of each household (419 = households; 2253 = total population in 1991; 273 ha = cultivated area). Estimates of crop yield losses were made using paired plots technique in four representative villages for each crop species. The magnitude of crop yield losses varied significantly with the distance of agricultural field from forest boundary. The total crop yield losses were high for wheat and potato in all the villages. The spatial distribution of total crop yield losses in any village indicated that they were highest in the area near to forest and least in the area near to village for all crops. Losses from areas near to forest contributed to more than 50% of total losses for each crop in all villages. However, in Lata, Peng and Tolma villages, the losses are high for kidney bean and chemmi (local variety of kidney bean) which varied between 18.5% to 30% of total losses in those villages. Potato alone represents 43.6% of total crop yield loss due to wildlife in Dronagiri village in monetary terms. Among the crops, the monetary value of yield losses are least for amaranth and highest for kidney bean. The projected total value of crop yield losses due to wildlife damage for buffer zone villages located in Garhwal Himalaya is about Rs. 538,620 (US$ 15,389). Besides food grains, horticultural crops i.e. apple, also suffered maximum damage. Major wildlife agents responsible for crop damage were wild boar, bear, porcupine, monkey, musk deer and partridge (chokor). Monkey and wild boar alone accounted for about 50% to 60% of total crop damage in the study villages. Goat and sheep are the major livestock killed by leopard. The total value of livestock losses at prevailing market rates is about Rs. 1,024,520 (US$ 29,272) in the study villages. Due to existing conservation policies and laxity in implementation of preventive measures, the problems for local inhabitants are increasing. Potential solutions discussed emphasize the need to undertake suitable and appropriate protective measures to minimize the crop losses. Change in cropping and crop composition, particularly cultivation of medicinal plants (high value low volume crops), were also suggested. Besides, fair and quick disbursement of compensation for crop loss and livestock killing need to be adopted. Local people of the buffer zone area already have a negative attitude towards park/reserve establishment due to socio-political changes inducing major economic losses and this attitude may lead to clashes and confrontations if proper ameliorative measures are not taken immediately.  相似文献   

2.
This study explores different socio-economic and institutional factors influencing the adoption of improved soil conservation technology (ISCT) on Bari land (Rainfed outward sloping terraces) in the Middle Mountain region of Central Nepal. Structured questionnaire survey and focus group discussion methods were applied to collect the necessary information from farm households. The logistic regression model predicted seven factors influencing the adoption of improved soil conservation technology in the study area including years of schooling of the household head, caste of the respondent, land holding size of the Bari land, cash crop vegetable farming, family member occupation in off farm sector, membership of the Conservation and Development Groups, and use of credit. The study showed that technology dissemination through multi-sectoral type community based local groups is a good option to enhance the adoption of improved soil conservation technology in the Middle Mountain farming systems in Nepal. Planners and policy makers should formulate appropriate policies and programs considering the farmers' interest, capacity, and limitation in promoting improved soil conservation technology for greater acceptance and adoption by the farmers.  相似文献   

3.
The Indo‐Gangetic plain is characterized by intensive agriculture, largely by resource‐poor small and marginal farmers. Vast swathes of salt‐affected areas in the region provide both challenges and opportunities to bolster food security and sequester carbon after reclamation. Sustainable management of reclaimed soils via resource conservation strategies, such as residue retention, is key to the prosperity of the farmer, as well as increases the efficiency of expensive initiatives to further reclaim sodic land areas, which currently lay barren. After five years of experimentation on resource conservation strategies for rice‐wheat systems on partially reclaimed sodic soils of the Indo‐Gangetic region, we evaluated changes in different soil carbon pools and crop yield. Out of all resource conservation techniques which were tested, rice‐wheat crop residue addition (30% of total production) was most effective in increasing soil organic carbon (SOC). In rice, without crop residue addition (WCR), soils under zero‐tillage with transplanting, summer ploughing with transplanting and direct seeding with brown manuring showed a significant increase in SOC over the control (puddling in rice, conventional tillage in wheat). In these treatments relatively higher levels of carbon were attained in all aggregate fractions compared to the control. Soil aggregate sizes in meso (0.25‐2.0 mm) and macro (2‐8 mm) ranges increased, whereas micro (< 0.25 mm) fractions decreased in soils under zero‐till practices, both with and without crop residue addition. Direct seeding with brown manuring and zero tillage with transplanting also showed an increase of 135% and 95%, respectively, over the control in microbial biomass carbon, without crop residue incorporation. In zero tillage with transplanting treatment, both with and without crop residue showed significant increase in soil carbon sequestration potential. Though the changes in accrued soil carbon did not bring about significant differences in terms of grain yield, overall synthesis in terms of balance between yield and carbon sequestration indicated that summer ploughing with transplanting and zero tillage with transplanting sequestered significantly higher rates of carbon, yet yielded on par with conventional practices. These could be appropriate alternatives to immediately replace conventional tillage and planting practices for rice‐wheat cropping systems in the sodic soils of the Indo‐Gangetic region.  相似文献   

4.
Eradicating hunger and malnutrition is a key development goal of the twenty first century. This paper addresses the problem of optimally identifying seed varieties to reliably increase crop yield within a risk-sensitive decision making framework. Specifically, a novel hierarchical machine learning mechanism for predicting crop yield (the yield of different seed varieties of the same crop) is introduced. This prediction mechanism is then integrated with a weather forecasting model and three different approaches for decision making under uncertainty to select seed varieties for planting so as to balance yield maximization and risk. The model was applied to the problem of soybean variety selection given in the 2016 Syngenta Crop Challenge. The prediction model achieved a median absolute error of 235 kg/ha and thus provides good estimates for input into the decision models. The decision models identified the selection of soybean varieties that appropriately balance yield and risk as a function of the farmer’s risk aversion level. More generally, the models can support farmers in decision making about which seed varieties to plant.  相似文献   

5.
Pesticide dependence is a major threat to food safety and local environment. Although numerous studies have explored different causes of pesticide dependence, few have examined how pesticides are locked into agricultural modernisation and rural transformation. Based on a case study of a Chinese village, this paper demonstrates how agricultural modernisation trajectory and rural changes have perpetuated the use of pesticides as necessities in agriculture as well as for farmers' livelihoods. Modern technologies, such as hybrid rice, conservation tillage, changes in crop structure, and reduction of intercropping all contribute highly towards pesticide dependence. The household responsibility system in China has provided the institutional foundation for increased pesticide use. Rural transformations driven by livelihoods diversification have created conducive social spaces for pesticide application. To step out of pesticide dependence, promotion of genetic diversity in agriculture, a reassessment of locational suitability of conservation tillage, institutional strengthening and the promotion of integrated pest management methods are suggested.  相似文献   

6.
In the final analysis, sustainable agriculture must derive from applied ecology, especially the principle of the regulation of the abundance and distribution of species (and, secondarily, their activities) in space and time. Interspecific competition in natural ecosystems has its counterparts in agriculture, designed to divert greater amounts of energy, nutrients, and water into crops. Whereas natural ecosystems select for a diversity of species in communities, recent agriculture has minimized diversity in favour of vulnerable monocultures. Such systems show intrinsically less stability and resilience to perturbations. Some kinds of crop rotation resemble ecological succession in that one crop prepares the land for successive crop production. Such rotations enhance soil organic processes such as decomposition and material cycling, build a nutrient capital to sustain later crop growth, and reduce the intensity of pest buildup. Species in natural communities occur at discrete points along the r-K continuum of reproductive maturity. Clearing forested land for agriculture, rotational burning practices, and replacing perennial grassland communities by cereal monocultures moves the agricultural community towards the r extreme. Plant breeders select for varieties which yield at an earlier age and lower plant biomass, effectively moving a variety towards the r type. Features of more natural landscapes, such as hedgerows, may act as physical and biological adjuncts to agricultural production. They should exist as networks in agricultural lands to be most effective. Soil is of major importance in agroecosystems, and maintaining, deliberately, its vitality and resilience to agricultural perturbations is the very basis of sustainable land use.  相似文献   

7.
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract: Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.  相似文献   

8.
农作物品种综合评判的熵权系数法研究   总被引:13,自引:1,他引:13  
针对农作物品种综合评判问题,应用熵权系数法的基本原理,综合考虑农作物的多种性状,提出了对农作物品种进行多准则综合评价的熵权系数方法,克服了以往评判中只注重作物的某一或某几项性状而忽略其它性状所造成的偏差。文中以鲁西北棉区两熟的小麦配套品种(系)为例,进行了具体的评价计算。  相似文献   

9.
Environmental conditions significantly affect production, but are often ignored in studies analysing productivity and efficiency leading to biased results. In this study, we examine the influence of selected environmental factors on productivity and efficiency in wheat farming in Bangladesh. Results reveal that environmental production conditions significantly affect the parameters of the production function and technical efficiency, as well as correlates of inefficiency. Controlling for environmental production conditions improves technical efficiency by 4 points (p<0.01) from 86% to 90%. Large farms are more efficient relative to small and medium sized farms (p<0.01 and 0.05), with no variation among regions. Policy implications include soil fertility improvement through soil conservation and crop rotation, improvement in managerial practices through extension services and adoption of modern technologies, promotion of education, strengthening the research-extension link, and development of new varieties that have higher yield potential and are also suitable for marginal areas.  相似文献   

10.
Crop genetic resources constitute an important aspect of biodiversity conservation, both because of their direct value to the farmers and due to their indirect global value. This study uses the contingent valuation method to document the economic value of crop genetic resources based on the farmers' willingness to pay for conservation. A total of 107 households in Kaski, Nepal were surveyed in November 2003. Their mean willingness to pay was USD 4.18 for in situ and USD 2.20 for ex situ conservation per annum. Landholding size, household size, education level, socio-economic status, sex of respondent, number of crop landraces grown, and knowledge on biodiversity influenced the willingness to pay for in situ conservation, whereas only landholding size and household size influenced the willingness to pay for ex situ conservation. The respondents were willing to contribute more for in situ than ex situ conservation because of the additional effect of direct use and direct involvement of the farmers in in situ conservation. This study supports the view that economic valuation of crop genetic resources can assist the policy makers in setting conservation priorities.  相似文献   

11.
In agricultural landscapes, studies that identify factors driving species richness and occupancy are important because they can guide farmers to use conservation practices that minimize species loss. In this context, anurans are threatened by habitat loss because they depend on the characteristics of both local water bodies and adjacent landscapes. We used a model selection approach to evaluate the influence of local and landscape variables in determining anuran species richness and occurrence in 40 freshwater bodies in a heavily deforested region of semideciduous Atlantic Forest in southeastern Brazil. Our aim was to develop recommendations for conservation of anuran communities in rural areas. Pond hydroperiod and area were the most important variables for explaining anuran species richness and occupancy, with greatest species richness being found in water bodies with intermediate hydroperiod and area. Other important variables that reflected individual species occupancies were the number of vegetation types and pond isolation. In addition, recent studies evidenced that water bodies near forest fragments have higher anuran abundance or diversity. In conclusion, we suggest the maintenance of semi-permanent ponds, isolated from large rivers or reservoirs and near forest fragments, as an effective strategy to conserve anuran fauna in agricultural landscapes of southeastern Brazil. Brazilian government requires the maintenance of forests as legal reserve in each farm, and farmers need to maintain ponds as drinking water for cattle or crop irrigation. For this reason, the guidelines suggested in the present study can be easily adopted, without additional costs to rural productivity.  相似文献   

12.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

13.
/ This study examines similarities and differences between organic and conventional farmers. We explore the factors that underlie farmers' conservation attitudes and behaviors, including demographic and farm characteristics, awareness of and concern for environmental problems associated with agriculture, economic orientation toward farming, and self-reported conservation practices. A series of intensive personal interviews was conducted with 25 farmers in Washtenaw County, Michigan, USA, using both qualitative and quantitative survey methods. The findings indicate that both groups of farmers share a concern for the economic risks associated with farming, although the organic farmers reported a significantly greater concern for long-term sustainability and a greater willingness to incur present risk to gain future benefits. Organic farmers expressed a greater awareness of and concern for environmental problems associated with agriculture. Organic farmers also scored significantly higher on a multifaceted measure of conservation practices, although both groups had a fairly high adoption rate. Implications of these findings are discussed, relative to economic risks of farming, implications for new farmers, effectiveness of conservation education and government programs, and impact of farm size and crop diversity.KEY WORDS: Environmental attitudes; Conservation behaviors; Organic farming; Agricultural sustainability  相似文献   

14.
The rapid increase of phosphorus (P) use in farming has raised concerns regarding its conservation and environmental impact. Increasing the P use efficiency (PUE) is an approach to mitigating these adverse impacts. In this study, we applied substance flow analysis (SFA) to establish a life-cycle P use efficiency model to determine the life-cycle PUE of the farming system used in Anhui Province in 2011, which is typical of the agriculture practiced in central China. Based on this model, the P flows and PUEs of five subsystems were identified and quantified: crop farming, crop processing, livestock breeding, rural living, and urban living. The three largest P flows were found in the crop farming and livestock breeding subsystems; it can therefore be concluded that these subsystems have substantial impacts on the entire farming system. In contrast, the PUEs of crop farming, rural consumption, and livestock breeding subsystems presented the three lowest PUEs (58.79%, 71.75%, and 76.65%, respectively). These results were also consistent with the finding that the greatest P losses occurred in crop farming and livestock breeding. Consequently, the study proposes that great potential exists for increasing PUEs in the farming system of Anhui, and several of the most promising measures could be combined for improving PUEs. Finally, the study assesses data quality and presents a sensitivity analysis for use in interpreting the results. The study also shows that improving PUE and decreasing P losses in farming systems through improved nutrient management must be considered an important issue, and this study represents valuable experience in resource conservation and agricultural development in China.  相似文献   

15.
The presence of Whitethroats and their potential invertebrate prey in farmland trees and shrubs was investigated. The management of this vegetation by farmers, and their motivation for that management, was explored using participatory techniques. Whitethroats were associated with Guiera senegalensis, the shrub species which supports most caterpillars and spiders. Farmers reported declines in trees and shrubs since the 1950s, loss of fallow areas, declines in soil fertility and crop yields, and increases in the use of fire for clearing fields. Trees are valued by people for their cultural and medicinal uses and some species used by Whitethroats and other birds have potential for restoring soil fertility, although this was not recognised by farmers. More sustainable use of savanna farmland could have both agronomic and wider conservation benefits, and the provision of information that accommodates farmers' cultural and economic incentives could benefit both farmers and wildlife.  相似文献   

16.
Nitrate-nitrogen (NO?-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO?-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO?-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO?-N loss, but NO?-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO?-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO?-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.  相似文献   

17.
Eragrostis tef (Zucc.), Cenchrus ciliaris L., and Digitaria eriantha Steud. were grown in a soil (Psammentic Haplustalf) and spoil material from a coalmine both treated with a lime water treatment residue (WTR) at rates of 0, 50, 100, 200, and 400 g kg(-1). The yield of the grasses, from the sum of the three harvests, and concentrations of B, Ca, Cu, K, Fe, Mg, Mn, N, Na, P, and Zn in foliage from the second harvest were determined. The yield of grasses grown in the soil decreased exponentially as WTR application increased. The yields of C. ciliaris, D. eriantha, and E. tef (in the 400 g kg(-1) WTR treated soil) decreased by 74.4, 78.7, and 59.8%, respectively, when compared with the control treatments. In the spoil, the yield of E. tef and D. eriantha decreased by 13.6% and and D. eriantha by 23.9%, while an increase was observed for C. ciliaris (45.4%), at the highest WTR application rate. No relationship existed between yield of E. tef and WTR application rate when grown in the spoil, while a weak negative linear relationship (p < 0.05) was found for D. eriantha and a positive linear relationship existed for C. ciliaris. Magnesium concentrations of the grasses were positively correlated to WTR application rate. Grasses grown in the soil had higher Na concentrations, while those grown in the spoil typically had higher B, N, and Zn concentrations. The decreases in yield were attributed to nutrient deficiencies (notably Zn), induced by high WTR application rates that led to high substrate pH. Disposal of high rates of WTR on the mine materials was not recommended.  相似文献   

18.
Industrialized agriculture currently substitutes many of the ecological functions of soil micro-organisms, macroinvertebrates, wild plants, and vertebrate animals with high cost inputs of pesticides and fertilizers. Enhanced biological diversity potentially offers agricultural producers a means of reducing the cost of their production. Conservation of biodiversity in agricultural landscapes may be greatly enhanced by the adoption of certain crop management practices, such as reduced pesticide usage or measures to prevent soil erosion. Still, the vast monocultures comprising the crop area in many Canadian agricultural landscapes are often of limited conservation value, thus the inclusion of appropriate wildlife habitat in and around arable lands is a fundamental prerequisite for the integration of wild species within agricultural landscapes. This review of current literature considers the potential for non-crop areas within agricultural landscapes to be reservoirs of agronomically beneficial organisms including plants, invertebrates, and vertebrate species. Non-crop habitats adjacent to crop land have been identified as significant for the maintenance of plant species diversity, for the conservation of beneficial pollinating and predatory insects, and as essential habitat for birds. A key component for enhancement of biodiversity is the reintroduction of landscape heterogeneity by (1) protection and enhancement of key non-crop areas, (2) smaller fields and farms, and (3) a greater mixture of crops, through rotation, intercropping and regional diversification. The benefits of increased biodiversity within arable lands are reviewed for various species groups. In the Canadian context, any serious attempt to derive significant agronomic benefit from increased biodiversity will require considerable changes in the agricultural programs and policies which shape mainstream industrialized agriculture. The problems of crop depredation by vertebrate species, weed and insect competition, which still represent significant impediments to the creation and proper management of wildlife habitat, are also discussed.  相似文献   

19.
Crop and livestock losses to wildlife are a concern for people neighboring many protected areas (PAs) and can generate opposition to conservation. Examining patterns of conflict and associated tolerance is important to devise policies to reduce conflict impacts on people and wildlife. We surveyed 398 households from 178 villages within 10 km of Ranthambore, Kanha, and Nagarahole parks in India. We compared different attitudes toward wildlife, and presented hypothetical response scenarios, including killing the problem animal(s). Eighty percent of households reported crop losses to wildlife and 13 % livestock losses. Higher crop loss was associated with more cropping months per year, greater crop variety, and more harvest seasons per year but did not vary with proximity to the PA, suggesting that PAs are not necessarily “sources” for crop raiders. By contrast, complaints of “depredating carnivores” were associated with people-grazing animals and collecting resources from PAs. Many households (83 %) engaged in mitigation efforts. We found that only fencing and guard animals reduce crop losses, and no efforts to lower livestock losses. Contrary to our expectations, carnivores were not viewed with more hostility than crop-raiding wildlife. Households reported greater inclination to kill herbivores destroying crops or carnivores harming people, but not carnivores preying on livestock. Our model estimated crop loss was 82 % across surveyed households (highest in Kanha), while the livestock loss experienced was 27 % (highest in Ranthambore). Our comparative study provides insights into factors associated with conflict loss and tolerance, and aids in improving ongoing conservation and compensation efforts.  相似文献   

20.
This paper uses data from the Central Highlands of Ethiopia to assess the productivity and production risk impacts of crop diversification. Using count index as a measure of crop biodiversity, results show that increasing crop biodiversity contributes positively to farm level productivity. In addition, the findings suggest that the level of production risk significantly responds to the level of diversity, with the effect highly conditional on the skewness. The major contribution of the paper is that, unlike previous similar studies that tended to focus on intra‐crop diversity, it incorporates the mutual interdependencies across crops within a farm by focusing on inter‐crop diversity. Hence the study adds to the growing empirical literature, particularly in Africa, that tests empirical relationships between productivity, risk and crop diversity. An important policy implication for a diversity rich country such as Ethiopia is that agro‐biodiversity can be used to improve agricultural productivity while promoting in situ conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号