首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper deals with the mechanical properties and degree of swelling (DS) of starch/PVA blend film with the functional groups i.e., hydroxyl and carboxyl group, of additives. Starch/PVA blend films were prepared by using the mixing process. Glycerol (GL) with 3 hydroxyl group, sorbitol (SO) with 6 hydroxyl group, succinic acid (SA) with 2 carboxyl group, malic acid (MA) with 1 hydroxyl and 2 carboxyl group, tartaric acid (TA) with 2 hydroxyl and 2 carboxyl group and citric acid (CA) with 1 hydroxyl and 3 carboxyl group were used as additives. The results of measured tensile strength (TS) and elongation (%E) verified that both hydroxyl and carboxyl group as a functional groups increased the flexibility and strength of the film. Values of DS for GL-added and SA-added films were low. However, DS values of the films added MA, TA or CA with both hydroxyl and carboxyl group were comparatively high. When the film was dried at low temperature, the properties of the films were evidently improved. The reason is probably because the hydrogen bonding was activated at low temperature.  相似文献   

3.
Chitosan films (CF) [1 and 2% w/v] alone and with cinnamaldehyde (CNE) [0.25, 0.5 and 1% v/v] were prepared using an emulsion method, and the obtained films were characterized in terms of water vapor permeability (WVP), water solubility and optical, mechanical and antioxidant properties. The incorporation of CNE at 1% (v/v) significantly decreased the water solubility of the film by approximately 4% for the 1 and 2% CF films, whereas the WVP increased (2.5–3.5 times). The incorporation of CNE (0.25 and 0.5%) into 2% CF significantly increased the tensile strength (TS) (62 and 34%, respectively) and the percent elongation (%E) values, 26, 30 and 52% for CF that contained 0.25, 0.5 and 1% CNE, respectively. The largest value of the elasticity modulus (EM) was observed for 2% CF with 0.25% CNE. All films exhibited a yellow appearance (b*), but the CNE content had a marked impact on the coloration of the films. The CNE recoveries of the CF films (1 and 2%) with 1% of CNE were high (43 and 67%). The antioxidant activities indicated that the incorporation of 1% CNE into CF films (1 and 2%) increased the antioxidant activity. The protective effects of the films with and without CNE on erythrocytes were very strong (36–72% hemolysis inhibition). These results suggest there are potential applications for CF-CNE films as active packaging for the preservation of food products.  相似文献   

4.
The objective of this work was to manufacture biodegradable films by two different processes (casting and extrusion), from different combinations of cassava starch and xanthan gum. These films were produced by casting and by extrusion from six different starch-xanthan gum combinations (0, 2, 4, 6, 8 and 10% w/w), containing glycerol as plasticizer (20% w/w) and were also characterized according to their microstructure, optical, mechanical, and barrier properties. Scanning electron microscopy of the starch-xanthan gum extruded films showed reticulated surface and smooth interior, suggesting that xanthan was driven to the surface and gelatinized starch to the interior of the films during extrusion. Films manufactured by casting were entirely homogeneous. In general, casted films presented lower opacity and water vapor permeability and higher stress at break than films manufactured by extrusion. Xanthan gum addition affected mechanical properties of starch films, improving their stress and strain at break, especially for extruded samples, but these properties did not show stability at different RH conditions.  相似文献   

5.
The waterborne polyurethane (PU) prepolymer was prepared based on isophorone diisocyanate (IPDI), polyester polyol (N220), dimethylol propionic acid (DMPA) and hydroxyethyl methyl acrylate (HEMA). The modified waterborne polyurethane–acrylate (PUA) emulsions were obtained with different proportions of acrylate (butyl acrylate and methyl methacrylate) and initiating agent by in situ dispersion technique. The structures and thermal properties of prepared PU and PUA were analyzed and characterized with FT-IR, UV–Vis spectroscopy and DSC. The PUA hybrid samples had lower glass transition temperature of hard segment and higher decomposition temperatures than PU sample. Performances of the emulsion and film were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The results indicated that the particle sizes of the PUA dispersions were larger than those of the pure PU and the solvent resistance, mechanical properties of PUA films was improved compare with the unmodified polyurethane film. The film had the biggest hardness and the least water absorption when the BA/MMA mass ratio 5:5 modified PU. The obtained PUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.  相似文献   

6.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

7.
Journal of Polymers and the Environment - Algae-based materials appear to be promising substitutes for plastics in many applications due to their eco-friendly belongings. However, high solubility,...  相似文献   

8.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

9.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

10.
The biodegradability, morphology, and mechanical properties of composite materials consisting of maleic anhydride-grafted poly(butylene succinate adipate) (PBSA-g-MA) and agricultural residues (wheat bran, WB) were evaluated. Composites containing maleic anhydride-grafted PBSA (PBSA-g-MA/WB) exhibited noticeably superior mechanical properties compared with those of PBSA/WB because of greater compatibility with WB. PBSA/WB exhibited a tensile strength at break of approximately 2–15 MPa more than PBSA-g-MA/WB. The dispersion of WB in the PBSA-g-MA matrix was highly homogeneous as a result of ester formation and the subsequent creation of branched and cross-linked macromolecules between the anhydride carboxyl groups of PBSA-g-MA and hydroxyl groups in WB. Additionally, the PBSA-g-MA/WB composites were more easily processed due to their lower melt viscosity. Water resistance of PBSA-g-MA/WB was higher than that of PBSA/WB, although weight loss of composites buried in Azospirillum brasilense BCRC 12270 liquid culture medium compost indicated that both were biodegradable, especially at high levels of WB substitution. After 60 days, the weight loss of the PBSA-g-MA/WB (40 wt%) composite was greater than 90 %. PBSA/WB exhibited a weight loss of approximately 4–8 wt% more than PBSA-g-MA/WB. The PBSA/WB and PBSA-g-MA/WB composites were more biodegradable than pure PBSA, which implies a strong connection between WB content and biodegradability.  相似文献   

11.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

12.
Journal of Polymers and the Environment - The current global proposal for withdrawing polymers with high resistance to degradation and from fossil sources from disposable appliances, as well as the...  相似文献   

13.
Journal of Polymers and the Environment - A considerable increase in the importance of vanadium globally and its common uses in many manufacturable alloys made it a target for much scientific...  相似文献   

14.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

15.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

16.
Journal of Polymers and the Environment - The major roadblock for recycling of waste electrical and electronic equipments (WEEE) depends on the viability of sorting process, which is a complex...  相似文献   

17.
In poultry industry chicken feathers are normally hydrolyzed and used to prepare animal feed. In this work the use of this material to prepare films was investigated. Keratins were extracted from chicken feathers with 2-mercaptoethanol in concentrated urea solution using sodium dodecyl sulfate (SDS). The effect of varying the amount of sorbitol on properties of chicken feather keratin (CFK) was investigated. As the concentration of plasticizer increased, the moisture content (MC) of these films increase, the monolayer MC increased from 0.060 (without plasticizer) to 0.482 g water/g dry matter (0.30 g sorbitol/g keratin). The water vapor permeability (WVP) varied between 0.096 g/m s Pa and 8.098 g/m s Pa for films without sorbitol and with 0.30 g sorbitol/g keratin, respectively. Film strength decreased from 5.13 MPa to 0.45 MPa and the elongation at break achieved the maximum value of 52.75% for samples with 0.02 g sorbitol/g keratin. The dry matter density didn’t change significantly, varying between 0.86–0.89 g/cm3 for all samples. Films with potential applications in food packaging can be obtained from CFKs. However, further researches are necessary to decrease film solubility and increase mechanical resistance.  相似文献   

18.
19.
During the past century, plastics have become a natural element in our every-day life. Lately however, an awareness about the fossil origin and often non-degradable nature of many plastics is rising. This has resulted in the emergence of some bio-based and/or biodegradable plastics, often produced from renewable resources. One possible candidate for bioplastics production could be found in cellulose. This paper aims at contributing information regarding a cellulose derivative, which could possibly be used in foamed plastics applications. Therefore, the reduction of the chain-length of a methyl ethyl hydroxyethyl cellulose (MEHEC), assessed by size exclusion chromatography, and the effect of chain-length on the foaming behaviour were studied. The foaming was accomplished with a hot-mould technique using aqueous polymer solutions. The generated steam was here used as the blowing agent and important parameters were polymer concentration and solution viscosity. The density of the produced foams was assessed and was in some cases comparable to that of commodity foams. It was found that reducing the chain-length enabled an increase of the initial polymer concentration for the foaming process. This is believed to be beneficial for creating more structurally stable foams of this type.  相似文献   

20.
Journal of Polymers and the Environment - The present study aimed to develop and characterize the soy protein isolate (SPI) nanocomposite film incorporated with CuO and TiO2 nanoparticles (NPs) for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号