首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Polymers and the Environment - The effect of various amount of ZnO nanocrystals (NCs) in composite starch/ZnO (PZ) and starch/chitosan/ZnO (PK) to the physical, structural,...  相似文献   

2.

Hydrogels are a kind of three dimensional polymeric network system which has a significant amount of water imbibing capacity despite being soluble in it. Because of the potential applications of hydrogels in different fields such as biomedical, pharmaceutical, personal care products, biosensors, and cosmetics, it has become a very popular area of research in recent decades. Hydrogels, prepared from synthetic polymers and petrochemicals are not ecofriendly. For preparing biodegradable hydrogels, most available plant polysaccharides like starch are utilized. In its structure, starch has a large number of hydroxyl groups that aid in hydrogel networking. For their easy availability and applications, starch-based hydrogels (SHs) have gained huge attention. Moreover, SHs are non-toxic, biocompatible, and cheap. For these reasons, SHs can be an alternative to synthetic hydrogels. The main focus of this review is to provide a comprehensive summary of the structure and characteristics of starch, preparation, and characterization of SHs. This review also addresses several potential multidimensional applications of SHs and shows some future aspects in accordance.

Graphic abstract
  相似文献   

3.
Soy meal, a co-product of the soy oil-based biodiesel industry, has up to 50 % protein content. The main aim of this work was to develop value-added application for soy meal. Soy meal was plasticized by glycerol and water, denatured by the addition of guanidine hydrochloride (GHCl), and then blended with poly (butylene adipate-co-terephthalate) (PBAT), petroleum based tough biodegradable polymer. Characterization by FTIR spectroscopy confirmed that soy meal was plasticized and denatured. The blends of PBAT/soy meal (SM), PBAT/plasticized soy meal and PBAT/GHCl modified plasticized soy meal (mPSM) were fabricated by industry prevalent extrusion and injection molding process. The developed bioblends were characterized by thermal and mechanical testing. One of the important outcomes of this research was that elongation of the bioblend was found to increase by 80 % after plasticization and denaturation of soy meal. Scanning electron microscope analysis showed that PBAT/mPSM blends have smoother surfaces and better internal structures than the other two.  相似文献   

4.
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.  相似文献   

5.
The objective of the present study was to synthesize and evaluate the effect of change in concentration of chitosan (CS) and N,N-methylenebisacrylamide (MBA)- a cross linking agent, on various properties such as lower critical solution temperature (LCST), zeta potential, particle size and poly dispersity index (PDI) of the synthesized co-polymer. Nine different formulations of chitosan-g-poly (N-isopropylacrylamide) (CS-g-PNIPAAm) co-polymer with varying CS and MBA concentrations were synthesized by a surfactant free dispersion copolymerization method. The synthesized co-polymer was further characterized and confirmed for its structure, morphology, particle size, zeta-potential, thermo and pH responsive properties, in-vitro cyto-compatability and stability studies using various analytical tools. The data confirms the successful synthesis of co-polymer. The increase in the concentrations of CS and MBA during the polymerization of co-polymer, resulted in proportional increase of LCST and zeta potential with decrease in particle size of co-polymeric nanoparticles. pH responsive studies showed that as the pH of the medium increases particle size and zeta potential decreases with increase in LCST of co-polymeric nanoparticles. From the results, it can be inferred that the synthesized co-polymeric nanoparticles exerted thermo and pH responsive properties with biocompatibility. By varying the CS and MBA concentrations in the co-polymer, desired LCST, particle size and zeta potential for co-polymeric nanoparticles can be obtained and thus the synthesized co-polymer may have great potential to be used as a drug carrier (nanoform) with both thermo and pH responsiveness.  相似文献   

6.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

7.
Journal of Polymers and the Environment - Green tea extract was encapsulated in cyclodextrin to form an inclusion complex. Fourier transform infrared, X-ray diffraction, and 1H-nuclear magnetic...  相似文献   

8.
The feasibility of reprocessing has been investigated as a possible alternative for acrylonitrile–butadiene–styrene terpolymer (ABS) recycling. Up to 10 reprocessing cycles have been performed by both extrusion and injection techniques and their effect on thermal and mechanical properties have been studied. Moreover, the effect of the combined reprocessing and accelerated weathering has been analyzed. Measurements collected after each molding cycle indicated virtually complete retention of thermal properties. The same behaviour has been observed from accelerated weathering tests. With respect to the mechanical properties, neither the flow index nor the tensile strength were affected by the number of reprocessing cycles though the impact strength decreased slightly. However, the studies based on the accelerated weathering show that there is an important influence of the number of reprocessing cycles on the tensile strength.  相似文献   

9.
Carbon fibers have been produced from hardwood lignin/synthetic polymer blend fibers. Hardwood kraft lignin was thermally blended with two recyclable polymers, poly(ethylene terephthalate) (PET) and polypropylene (PP). Both systems were easily spun into fibers. A thermostabilization step was utilized prior to carbonization to prevent fusion of individual fibers. For the lignin-based carbon fibers, careful control of heating rate was required. However, PET–lignin blend fibers can be thermostabilized under higher heating rates than the corresponding homofibers. Carbon fiber yield decreased with increasing incorporation of synthetic plastic. However, carbon fiber yield obtained for a 25% plastic blend fiber was still higher than that generally reported for petroleum pitch. Blend composition also affected surface morphology of the carbon fibers. Immiscible lignin–PP fibers resulted in a hollow and/or porous carbon fiber; whereas carbon fiber produced from miscible lignin–PET fibers have a smooth surface. Synthetic polymer blending also affected the mechanical properties of the fibers, especially MOE; lignin-based carbon fiber properties improved upon blending with PET.  相似文献   

10.
Sulfated polysaccharides were isolated from two Tunisian fish skins grey triggerfish (Balistes capriscus) (GTSP) and smooth hound (Mustelus mustelus) (SHSP). Their chemical and physical characteristics were investigated. The Analysis of surface morphology by scanning electron microscopy of both sulfated polysaccharides displayed the same shape with netted structure. The antioxidant activities of GTSP and SHSP were evaluated using various in vitro antioxidant assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power, β-carotene bleaching inhibition assay (IC50 GTSP = 0.5 mg mL?1 and IC50 SHSP = 0.6 mg mL?1) and DNA nicking assay. Both sulfated polysaccharides exhibited good antioxidant activities. The sulfated polysaccharides showed strong angiotensin I-converting enzyme inhibitory activities (IC50 GTSP = 0.16 mg mL?1 and IC50 SHSP = 0.18 mg mL?1). These results revealed that GTSP and SHSP exhibited significant antihypertensive activities. Overall, the results indicated that grey triggerfish and smooth hound skins can be used to generate high value-added products, thus offering a valuable source of bioactive sulfated polysaccharides for application in wide range of biotechnological applications.  相似文献   

11.
Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24–192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively.  相似文献   

12.
Journal of Polymers and the Environment - This study aimed to develop and characterize gelatin and inulin nanobiocomposite films with crystalline nanocellulose (CNC) and Malva sylvestris extract...  相似文献   

13.
Journal of Polymers and the Environment - Synthetic plastics generate major problems in landfills after their consumption for occupying high volumes and difficult the decomposition of other organic...  相似文献   

14.
The present study aimed to optimize the pellets formulation (deoiled rice bran, potato peel powder and plasticizers) for the development of the injection molded pots. The maximum hardness and bulk density (desirable responses) were obtained for pellets having 100 g of deoiled rice bran, 100 g potato peel powder and 14 % of cashew nut shell liquid (CNSL) as well as 14 % of glycerol (GL) (on raw material basis). The optimized pellets and the pots developed from them were characterized for their physico-chemical, functional, rheological and morphological properties. Expansion ratio, pellet durability index and hardness of the pellets with 14 % CNSL were found to be 1.097, 98.647 % and 485.551 N, respectively. For pellets with 14 % GL expansion ratio, pellet durability index and hardness were found to be 1.150, 97.747 % and 462.949 N, respectively. The biodegradation analysis of the pots developed from optimized pellets with 14 % CNSL and GL degraded in 11 and 9 weeks, respectively. Porosity, puncture force, density and hardness of ‘AP’ pots were 27.473 %, 495.731 N, 1.549 g/ml and 542.641 N, respectively. However, for ‘BP’ pots, the porosity, puncture force, density and hardness were 32.548 %, 440.149 N, 1.191 g/ml and 507.841 N, respectively. Pots prepared from 14 % CNSL (AP) were better in physical and mechanical properties as compared to pots developed from glycerol.  相似文献   

15.
Recycled plastics are considered low performance materials because their properties are expected to decrease drastically with recycling. The objective of this study was to characterize a 15 wt.% glass filled polyethylene terephthalate (rPET-15GF) using six recycle generations and four recycle ratios. Mechanical properties such as tensile strength, elastic modulus, and percent elongation to failure of the PET composite were determined for various recycle generations and recycle ratios. Results show that the mechanical properties of rPET-15GF decrease slightly per recycle generation. In contrast, thermal properties of rPET-15GF were not at all affected by the recycling process. This data demonstrates that recycled glass filled PET can be used effectively to fabricate components without significantly affecting their mechanical performance.  相似文献   

16.
高氮低碳废水生物脱氮研究进展   总被引:11,自引:0,他引:11  
针对传统生物脱氮工艺在处理高氨氮、低碳源废水时存在的问题,提出了短程硝化一反硝化和厌氧氨氧化两种生物脱氮新技术,初步探讨了影响亚硝酸盐积累和厌氧氨氧化工艺的因素。介绍了半硝化-厌氧氨氧化工艺的原理和特征,为高氨氮、低碳源废水生物脱氮工艺的没计提供 全新的理论和思路。  相似文献   

17.
This study produced poly (lactic acid) sheets using a biaxial stretching process, to investigate the effects of biaxial stretching on thermal properties, crystallinity, shrinkage and mechanical properties of PLA films. The results of differential scanning calorimetry show that the glass temperature peak of PLA films, which weakened after stretching. The cold crystallization peak of PLA films nearly disappeared at stretch ratios of 4 × 4 with a stretching rate above 50 %/s. The orientation and strain crystallization of PLA films were suppressed at stretching temperatures of approximately 100–110 °C. The shrinkage of PLA decreased proportionally to the stretch rate and inversely proportional to the stretching temperature, suggesting that the internal stresses frozen in the amorphous phase were an indication of a decrease in the crystallinity of the films, implying that PLA films would be best suited to low-shrinkage applications. The stress–strain of the PLA films increased considerably following the biaxial stretching process. In addition, PLA films exposed to hot water treatment show a slight decrease in stress values, probably attributable to a relaxation of the molecules, which have undergone orientation but failed to crystallize.  相似文献   

18.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

19.
Journal of Polymers and the Environment - The present experimental investigation aims to discover the effect of hydrothermal aging on the mechanical properties of virgin and recycled PSU, as well...  相似文献   

20.
Journal of Polymers and the Environment - In the present study, flaxseed protein-alginate films were prepared with different concentrations of silver nanoparticles (AgNPs) and were evaluated for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号