首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To decrease the usage of petroleum based materials, a kind of bio-resource based composite foams were developed with soy protein isolate (SPI) as reactive reinforcing filler in castor oil based polyurethane foams (PUF) prepared by self-rising method using water as a blowing agent. The resulting composite foams were evaluated for their morphology, density, mechanical and biodegradation properties, etc. Fourier transform infrared spectroscopy study exhibited characteristic peaks for SPI and PUF and indicated that the amino groups and hydroxyl groups on SPI reacted with polyphenyl polymethylene polyisocyanates (PAPI) to increase the crosslinking degrees of the composite foams. Densities of the resultant composites were found to increase with increasing SPI content. Mechanical properties of the samples were improved with the increase of SPI content. The compost tests further proved that the composite PUF had better biodegradability than neat PUF. Therefore, this research has provided a simple method of preparing the bio-resource based polyurethane foams, while exploring the potential of using SPI in polyurethane foam applications.  相似文献   

2.
Cure characteristics, Mooney viscosity and physico-mechanical properties of natural rubber (NR) containing CTAB modified kaolin have been studied. NR mix containing 6 phr (parts per hundred part rubber) of CTAB modified kaolin showed significant increases in cure rate and state of cure as compared to gum NR compound and a mix containing the same amount of unmodified kaolin. Lower Mooney viscosity of the NR mix containing CTAB modified kaolin suggested improved processability. Reinforcing effect of CTAB modified kaolin in NR was evident from higher chemical crosslink density index, tensile modulus, hardness, tensile strength and tear strength. Besides, the NR vulcanizate containing 6 phr of CTAB modified kaolin showed lower abrasion loss and heat build-up which could be beneficial for applications such as tire treads.  相似文献   

3.
Journal of Polymers and the Environment - This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and...  相似文献   

4.
Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.  相似文献   

5.
Journal of Polymers and the Environment - Environmental concerns and the positive aspects of biowaste materials gained the attention of researchers to use them as filler materials in fabricating of...  相似文献   

6.
Journal of Polymers and the Environment - The current global proposal for withdrawing polymers with high resistance to degradation and from fossil sources from disposable appliances, as well as the...  相似文献   

7.
The thermoplastic starch (TPS) and nanocomposite(TPS/OMMT) was prepared with 15% carbamide, 15% ethanolamine and different contents of organic activated montmorillonite (OMMT) by twin-screw extruder with a 130 °C barrel temperature. Fourier transforms infrared spectroscopy and wide angle X-ray diffraction shown that the alkylamine in dodecyl benzyl dimethyl ammonium bromide could react with MMT via cation exchange reaction. After treated, the d(001)space distance of MMT increased from 1.5 to 1.7 nm. Scanning electron microscope revealed that the lower contents of OMMT could disperse well in the matrixes of TPS. The carbamide, ethanolamine and the OMMT could destroy the crystallization behavior of starch, but only the OMMT restrained this behavior for long-term storing. Mechanical properties investigation indicated that the tensile strength and modulus of TPS/OMMT nanocomposites were better than those of TPS, while the elongation at break was descended with the increasing of OMMT contents. When the content of OMMT was 4%, the tensile strength and modulus of TPS was improved from 4.2 and 42 MPa to 6.0 and 76 MPa, respectively.  相似文献   

8.

The aim of the current work was to produce sodium alginate (SA) maltodextrins (MD) based functional films incorporated with phenolic extract of Azolla pinnata leaves fern (AF) by solution molding technique. AF with different concentrations (0.8, 1.2 and 1.6% w/w) were integrated inside SA.MD films. The resulted films were characterized to investigate the surface structure by scanning electron microscope (SEM), thermal disposal by (DSC), crystallization by X-ray diffraction (XRD), potential interaction by (FT-IR) and some mechanical properties. The SEM micrographs indicated that the higher concentration (1.6%) of AF extract caused development of wrinkles on the surface of films. And as a result, there were a significant decrease of elongation at break (EB) and tensile strength properties of films to 55.01 and 58.42%, respectively. By continues addition of AF extract to SA.MD films, the film thickness increased from 0.124 to 0.181 mm, the scavenging and antimicrobial properties were enhanced by the attendance of ferulic acid, rutin, thiamine, tamarixetin, astragalin, quercetin, chlorogenic acid and epicatechin inside extracts. Furthermore, the films solubility, swelling degree and water vapor permeability were decreased to 13.08%, 26.41% and 1.662?×?10??10 g H2O/m s p.a. The resulted films could be utilized as composite packaging material for different food applications.

  相似文献   

9.
Journal of Polymers and the Environment - Reactive Blue 19 (RB19) removal from synthetic textile wastewater was investigated by using a CoFe2O4@methylcellulose (MC) activated with peroxymonosulfate...  相似文献   

10.
Natural filler/high density polyethylene (HDPE) injection-molded composites of flour from different lignocellulosic sources were prepared, and their long-term water absorption and thickness swelling were studied. Filler samples from wheat straw, hybrid Euro-American poplar, and loblolly pine were mixed with the matrix at 35 wt% lignocellulosics content and either zero or 2% maleic anhydride grafted polyethylene (MAPE) as compatibilizer. Results indicated water absorption of all the composites followed the kinetics of a Fickian diffusion process. The water diffusion coefficient of the composites was clearly dependent upon the lignocellulosic type. The wheat straw composites showed the highest and the pine composites exhibited the lowest water absorption coefficients. The highest thickness swelling took place in the wheat straw composites, followed by the poplar and pine composites, respectively. Adding MAPE to the composites decreased the water diffusion coefficient and thickness swelling by improving the adhesion between natural filler and the HDPE.  相似文献   

11.
Journal of Polymers and the Environment - Polymers used as raw materials for synthetic packaging, i.e., those obtained from petroleum-derived sources, are resistant to degradation. Because of this,...  相似文献   

12.
A study on the possibility of recycling waste materials, such as olive husk, the solid phase derived from an olive oil mill, in blend with thermoplastic polymers to produce new materials for manufacturer of, for example, containers and formworks, has been carried out. The present paper describes the methodology used for the preparation and the characterization of composite samples prepared by mixing various percentages of olive husk and polypropylene. A screening on the chemical-physical characteristics of the olive husk is reported, as well as a set of tests applied to evaluate the mechanical properties of the manufactured products obtained.  相似文献   

13.
Journal of Polymers and the Environment - Oil spills causes severe degradation to marine ecosystems and poses long term health effects on many animals on the food chain, including humans. A...  相似文献   

14.
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a versatile, biobased and biodegradable copolymer from the family of polyhydroxyalkanoates. This study aims to further ameliorate its properties in order to enhance its applicability for food packaging purposes through preparation of organomodified montmorillonite clay (OMMT) nanocomposites. Nanocomposites based on pure PHBHHx as well as commercial PHBHHx granulate, after a previous dry-mixing with OMMT in concentrations of 1, 3, 5 and 10 wt%, were prepared using melt blending and compression molding. Investigation of the samples showed well dispersed nanofiller and highly intercalated nanocomposites, resulting in a continuous decrease in gas permeability, lowering O2, CO2 and water vapor permeability with about 5–7 % and approximately 40 % at OMMT concentration of 1 and 10 wt%, respectively. Besides gas permeability, other properties were affected as well. Thermal stability of the samples increased gradually up to 5 wt% nanofiller, but was reduced at 10 wt%. In order to investigate the effects of OMMT and molecular weights on PHBHHx crystallization, nanocomposites were also produced by solvent-casting and compared to those obtained by melt-blending. Crystallization was retarded, because of severe lowering of molecular weight due to processing-induced chain scission, catalyzed by OMMT moisture. However, this reduction was counteracted for a large part by using commercial PHBHHx granulate, which has shown better crystallization properties. The samples were rendered increasingly more brittle, displaying higher Young’s modulus and severely reduced elongation at break. From this study it appeared that, upon viewing all affected properties as a whole, the sample based on commercial PHBHHx and containing 3 wt% OMMT shows most promise for possible applications, however further research must be performed in order to exploit their fullest potential.  相似文献   

15.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   

16.
Vast amounts of co-streams are generated from plant and animal-based food processing industries. Efficient utilization of these co-streams is important from an economic and environmental perspective. Non-utilization or under-utilization of co-streams results in loss of potential revenues, increased disposal cost of these products and environmental pollution. At present, extensive research is taking place around the globe towards recycling of co-streams to generate value-added products. This review evaluates various co-streams from food processing industries as raw materials in developing biodegradable agricultural mulching applications. Among the agriculture-based co-streams, potato peels, tomato peels, carrot residues, apple pomace, coffee residues and peanut residues were reviewed with respect to production amount, composition, film forming components and film forming capabilities. Similarly, selected co-streams from slaughterhouses, poultry and fish processing industries were also reviewed and evaluated for the same purpose.  相似文献   

17.
An investigation on the effect of epoxidation and maleated natural rubber (MNR) on fatigue and rubber-filler interaction properties of paper sludge filled natural rubber composites was elucidated. Paper sludge loading was varied from 0 to 40 phr and conventional vulcanisation system was used while compounding was carried out on a laboratory sized two roll mill. Two different types of natural rubber, SMR L and ENR 50 having 0 and 50 mole% of epoxidation were used in order to investigate the effect of epoxidation on the composites. Results indicate that, at a fixed filler loading, ENR 50 vulcanizates exhibit higher fatigue life than SMR L vulcanizates especially at filler loading below 20 phr which might be associated with better rubber-filler interaction. In the case of composites with the addition of maleated natural rubber (MNR), a higher fatigue life was observed due to presence of physical and/or chemical linkages, which increases the interfacial adhesion. Scanning electron microscopy (SEM) micrographs of fatigue fracture surfaces and rubber-filler interaction study supported the observed result on fatigue life.  相似文献   

18.
Increased environmental awareness and interest in long-term sustainability of material resources has motivated considerable advancements in composite materials made from natural fibers and resins, or biocomposites. In spite of these developments the lower stiffness and strength of biocomposites has limited their applications to non-load-bearing components. This paper presents an overview of a study aimed at showing that the shortcomings of biocomposites can be overcome through hybrid material designs and efficient structural configurations to make them suitable for load bearing structural components. Hybrid blends of natural and synthetic fibers can significantly improve the characteristics of biocomposites with minimal cost and environmental impact, and hierarchical cellular designs can maximize material efficiency in structural components. Periodic and hierarchical cellular plate designs made from natural fibers and unsaturated polyester resin were evaluated experimentally and analytically. Stiffness, strength, and dimensional stability of all-biocomposite and hybrid natural–synthetic material systems were evaluated through material tests while structural performance of cellular plate designs was assessed through flexural tests on laboratory-scale samples. The experimental results were correlated with analytical models for short-fiber composites and cellular structures. The results showed that biocomposites have adequate short-term performance and that they can efficiently compete with housing panels made from conventional structural materials.  相似文献   

19.
Journal of Polymers and the Environment - The study investigated the effect of lignocellulosic biomass filler decayed by brown-rot fungi on the preparation and properties of polyurethane (PU) foam....  相似文献   

20.
Journal of Polymers and the Environment - This study explains the development of eco-friendly polyvinyl alcohol (PVA)/oxidized maize starch (OMS)/Betel leaves extract (BLE) blend films by employing...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号