首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1000ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1000ppm as CH(4) from primary treatment facilities are less than US$0.1 for perm(3) wastewater treatment capacity.  相似文献   

2.
A reliable model for any wastewater treatment plant is essential in order to provide a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. This process is complex and attains a high degree of nonlinearity due to the presence of bio-organic constituents that are difficult to model using mechanistic approaches. Predicting the plant operational parameters using conventional experimental techniques is also a time consuming step and is an obstacle in the way of efficient control of such processes. In this work, an artificial neural network (ANN) black-box modeling approach was used to acquire the knowledge base of a real wastewater plant and then used as a process model. The study signifies that the ANNs are capable of capturing the plant operation characteristics with a good degree of accuracy. A computer model is developed that incorporates the trained ANN plant model. The developed program is implemented and validated using plant-scale data obtained from a local wastewater treatment plant, namely the Doha West wastewater treatment plant (WWTP). It is used as a valuable performance assessment tool for plant operators and decision makers. The ANN model provided accurate predictions of the effluent stream, in terms of biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) when using COD as an input in the crude supply stream. It can be said that the ANN predictions based on three crude supply inputs together, namely BOD, COD and TSS, resulted in better ANN predictions when using only one crude supply input. Graphical user interface representation of the ANN for the Doha West WWTP data is performed and presented.  相似文献   

3.
Eight small-scale municipal wastewater treatment plants were evaluated over a period of 19 months in the suburb of Las Rozas in Madrid (Spain). Four plants used compact extended aeration, two used conventional activated sludge, two used conventional extended aeration, one used a rotary biodisc reactor and the other used a peat bed reactor. The best results were obtained from the plants that used conventional technologies and the biodisc. Conventional activated sludge and extended aeration had higher removal efficiencies for ammonia, TSS, COD and BOD(5) and produced good quality final effluents for final disposal in accordance with the discharge standard. Empirical equations that correlated the concentration of dissolved oxygen in the effluents with the efficiencies of TSS, ammonia, COD and BOD(5) removals for all plants evaluated were obtained. The performance of the plants using compact extended aeration was affected more than those using conventional technologies or rotary biodisc when the capacity exceeded that of its initial design.  相似文献   

4.
This paper investigates the removal of coliforms in full-scale activated sludge plants (ASP) operating in northern regions of India. Log2.2 and log2.4 removal were observed for total coliforms (TC) and fecal coliforms (FC), respectively. However, the effluent still contained a significant number of TC and FC which was greater than the permissible limit for unrestricted irrigation as prescribed by WHO. The observations also suggest that extended aeration (EA) process operating under high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) is more efficient in the removal of coliforms. Further attempts have been made to establish the relationship between two key wastewater parameters, i.e. biochemical oxygen demand (BOD) and suspended solids (SS) with respect to fecal and TC. The relationships were observed to be linear with a good coefficient of correlation. The interrelationship of BOD and SS with coliforms manifest that improvement of the microbiological quality of wastewater could be linked with the removal of SS. Therefore, SS can serve as a regulatory tool in lieu of an explicit coliforms standard.  相似文献   

5.
Due to the toxic nature of chlorophenol compounds present in some chemical industry effluents, biological treatment of such wastewaters is usually realized with low treatment efficiencies. Para-chlorophenol (4-chlorophenol, 4-CP) containing synthetic wastewater was treated in an activated sludge unit at different hydraulic residence times (HRT) varying between 5 and 30 h while the feed COD (2500 mg l(-1)), 4-CP (500 mg l(-1)) and sludge age (SRT, 10 days) were constant. Effects of HRT variations on COD, 4-CP, toxicity removals and on settling characteristics of the sludge were investigated. Percent COD removals increased and the effluent COD concentrations decreased when HRT increased from 5 to 15 h and remained almost constant for larger HRT levels. Nearly, 91% COD and 99% 4-CP removals were obtained at HRT levels above 15 h. Because of the highly concentrated microbial population at HRT levels of above 15 h, low effluent (reactor) 4-CP concentrations and almost complete toxicity removals were obtained. High biomass concentrations obtained at HRT levels above 15 h were due to low 4-CP contents in the aeration tank yielding negligible inhibition effects and low maintenance requirements. The sludge volume index (SVI) decreased with increasing HRT up to 15 h due to high biomass concentrations at high HRT levels resulting in well settling sludge with low SVI values. Hydraulic residence times above 15 h resulted in more than 90% COD and complete 4-CP and toxicity removals along with well settling sludge.  相似文献   

6.
Removal of Pb(II) from wastewater using wheat bran   总被引:5,自引:0,他引:5  
The adsorption of Pb(II) ions from aqueous solutions on wheat bran (WB) has been investigated as a function of initial concentration, adsorbent dose, adsorbent particle size, agitation speed, temperature, contact time and pH of solution. The equilibrium process was described well by the Langmuir isotherm model with maximum sorption capacities of 69.0, 80.7 and 87.0 mgg(-1) of Pb(II) on wheat bran at 20, 40 and 60 degrees C, respectively. Thermodynamic parameters, i.e. DeltaG(0), DeltaH(0) and DeltaS(0) have also been calculated for the system and the sorption process was found to be endothermic. Good correlation coefficients were obtained for the pseudo second-order kinetic model. The metal ion could be stripped by addition of 0.5M HCl, making the adsorbent regeneration and its reutilization possible.  相似文献   

7.
This study examines and evaluates, by using emergy analysis, the use of environmental resources for wastewater treatment in a Swedish town. Emergy analysis was applied, while it facilitates the comparison of resource use of substantially different kind. In the emergy analysis, all resources are assessed on the basis of the amount of direct and indirect solar energy required in their generation. The study also includes an evaluation of the amount of emergy associated with the production of wastewater. On the basis of our analysis, we suggest that the large amount of emergy that wastewater contains are in proportion to the amount of resources employed for wastewater treatment and the extensive effects on surrounding ecosystems of discharge of untreated wastewater. The use of local renewable natural resources in Swedish municipal wastewater treatment systems is negligible compared with the use of purchased inputs, processed largely with the support of fossil energy. A drastic shift of this order would demand that extensive land areas surrounding human settlements be (indirectly or directly) devoted to wastewater treatment. These areas are not accessible today. Our analysis also indicates that resource requirements from the economy in the production of electricity by the digestion of sewage sludge is about two times the total resource use for generation of the average mix of electricity used in the town. We, therefore, conclude that if the only reason to digest the sludge were to produce electricity, it would be more resource-efficient to purchase the electricity on the Swedish distribution net. Accordingly, there is no resource economy in producing biomass to digest just to increase the energy production at the wastewater treatment plant.  相似文献   

8.
Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.  相似文献   

9.
The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occur at this point due to the low pH. The increases in ammonium and pH during anaerobic digestion cause precipitation to take place mainly inside the digesters and in downstream processes. This study shows that 50.7% of the available phosphate is fixed in the digester of which 52.0% precipitates as ammonium struvite, 39.2% precipitates as hydroxyapatite and the remaining 8.8% is adsorbed on the surface of the solids. Thermodynamic calculations confirm the precipitation of struvite and hydroxyapatite and also confirm that potassium struvite does not precipitate in the anaerobic digesters.  相似文献   

10.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development.  相似文献   

11.
Sulfate-reducing bacteria (SRB) that could grow on modified Postgate C medium (PC) containing chromium(VI) were isolated from industrial wastewaters and their chromium(VI) reduction capacities were investigated as a function of changes in the initial pH values, chromium, sulfate, NaCl and reactive dye concentrations. The optimum pH value at 50 mg l(-1) initial chromium(VI) concentration was determined to be 8. Chromium(VI) reduction by SRB was investigated at 22.7-98.4 mg l(-1) initial chromium(VI) concentrations. At the end of the experiments, the mixed cultures of SRB were found to reduce within 2-6 days more than 99% of the initial chromium(VI) levels, which ranged from 22.7 to 74.9 mg l(-1). The effects of the initial 0-9.0 g l(-1) concentrations of disodium sulfate and 0-6% (w/v) concentrations of NaCI to chromium reduction showed that the lowest concentrations of sulfate and NaCI were the best for chromium reduction in the PC medium including 50 mg l(-1) chromium(VI). Chromium(VI) reduction in 50 mg l(-1) and 25-100 mg l(-1) Remazol Blue, Reactive Black B or Reactive Red RB containing media were also investigated. In the experiments, 25-30% of the initial dye concentrations and 95% of the chromium(VI) was removed from the medium at the end of 72-h and 24-h incubation periods, respectively.  相似文献   

12.
The synthesis of distributed wastewater treatment plants (WTPs) has been studied to reduce capital and operating costs associated with wastewater treatment. In this study, the environmental and economic feasibility of a total wastewater treatment network system (TWTNS) including distributed and terminal WTPs was estimated using life cycle assessment (LCA) and life cycle costing (LCC) methods. Wastewater sources and existing distributed and terminal WTPs in an iron and steel plant were networked. The TWTNS was generated from the optimal solution to a mathematical optimization model and compared to a conventional wastewater treatment system (CWTS). The environmental effect scores of the TWTNS were from 29.6% to 68.3% higher than those of the CWTS because of higher electricity consumption required to pump wastewater to the networked WTPs. However, the life cycle cost of the TWTNS was lower than that of the CWTS by 10.1% because of the decrease of the labor cost resulting from the closing of three distributed WTPs. Overall, the TWTNS was no more eco-efficient than the CWTS because the increase of environmental burdens outweighed the decrease of economic costs.  相似文献   

13.
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.  相似文献   

14.
This work was performed to develop an operational map for the objective diagnosis of the process operating states of a municipal wastewater treatment plant, for which multivariate statistical analysis techniques were applied. PCA (principal component analysis) was used to reduce the dimension of the data sets obtained from the field municipal wastewater treatment plant. A K-means clustering analysis was used to classify the group according to the property of the process operating state. A Fisher's linear discriminant analysis was used to derive the discriminant function of each classified group. An operational map was developed by scatter-plotting the derived principal components (PCs) on a two-dimensional coordinate according to the classified groups. Using the new data sets not used for developing the operational map, the practical usefulness of the operational map and discriminant function in diagnosing the process operating state were evaluated. Hence, the process operating state could be easily and quickly diagnosed and the dynamic trend of the process operating state was also able to be estimated using the operational map.  相似文献   

15.
Due to the toxic effects of trichlorophenol (TCP) on microorganisms, biological treatment efficiencies of TCP containing wastewaters are usually low. Synthetic wastewater containing 2,4,6-TCP was biologically treated in a hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle in order to improve COD and TCP removals. Effects of the feed TCP concentration on COD, TCP and toxicity removal performance of the system were investigated for the feed TCP between 50 and 450 mg L(-1) while the sludge age (solids retention time, SRT) and hydraulic residence time (HRT) were kept constant at 20 d and 25 h, respectively. Biomass concentrations in the packed column and in the aeration tank decreased with increasing feed TCP concentrations due to toxic effects of TCP on the organisms. Low biomass concentrations in the system at high feed TCP contents resulted in low COD, TCP and toxicity removals. Therefore, percent TCP, COD and toxicity removals decreased with increasing feed TCP concentrations especially above 400 mg L(-1). The effluent TCP concentrations were lower than 20 mg L(-1) for the feed TCP concentrations below 390 mg L(-1) resulting in TCP and COD removals above 90%. Specific rates of TCP and COD removals increased with the feed TCP due to low biomass concentrations at high TCP contents. The system should be operated at a feed TCP lower than 400 mg L(-1) in order to obtain more than 90% TCP, COD and toxicity removals under the specified experimental conditions.  相似文献   

16.
This paper presents industrial experience of process identification, monitoring, and control in a full-scale wastewater treatment plant. The objectives of this study were (1) to apply and compare different process-identification methods of proportional-integral-derivative (PID) autotuning for stable dissolved oxygen (DO) control, (2) to implement a process monitoring method that estimates the respiration rate simultaneously during the process-identification step, and (3) to propose a simple set-point decision algorithm for determining the appropriate set point of the DO controller for optimal operation of the aeration basin. The proposed method was evaluated in the industrial wastewater treatment facility of an iron- and steel-making plant. Among the process-identification methods, the control signal of the controller's set-point change was best for identifying low-frequency information and enhancing the robustness to low-frequency disturbances. Combined automatic control and set-point decision method reduced the total electricity consumption by 5% and the electricity cost by 15% compared to the fixed gain PID controller, when considering only the surface aerators. Moreover, as a result of improved control performance, the fluctuation of effluent quality decreased and overall effluent water quality was better.  相似文献   

17.
Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan. Yet the optimal size of an industrial wastewater treatment plant could fall in between 6000 CMD and 20,000 CMD.  相似文献   

18.
The objectives of this study were to investigate the significance of the effects and interactions for during competitive sorption of soluble microbial products (SMP). Batch experiments were conducted to assess the competitive sorption characteristics and individual affinity of glucose (carbohydrate) and bovine serum albumin (BSA) (protein) as two representative fractions of SMP. The influence of surface availability was investigated by using carbon particles with different particle sizes (5-75 μm, 75-850 μm, and 850-1000 μm) and different carbon amounts. Competitive effects and interactions were evaluated for each adsorbate and surface availability. Competitive sorption mechanisms were quantified in relation to surface affinity of the SMP fractions. Sorption capacity profiles of the SMP fractions at equilibrium were developed using second-degree polynomial models for the experimental data and compared with the estimates obtained from the modified Langmuir-like model which uses single parameter sorption data to estimate competitive sorption profiles of systems with two adsorbates. Adequacy limitations of the modified Langmuir-like model for each SMP fraction were evaluated based on the significance of the synergistic and antagonistic effects between the two SMP fractions and the carbon surface availability.  相似文献   

19.
臭氧及联用技术在水处理中的应用   总被引:14,自引:0,他引:14  
介绍国内外臭氧氧化法及其联用技术的最新进展及应用前景。  相似文献   

20.
Investigations were conducted into the treatment of effluents produced during manufacturing processes at both a chemicals production facility and a paint manufacturing facility. A comparison of costs of wastewater treatment at both facilities was also performed. The untreated effluents from both facilities were high in biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS). In addition, the effluents from the two facilities deviated significantly in dissolved oxygen (DO) content and pH levels. However, both facilities ultimately released treated wastewater with allowable amounts or levels of BOD, COD, TDS, DO, and pH as permitted by the Department of the Environment, Ministry of Environment and Forests, Bangladesh (DOE). The effluent treatment plants (ETP) at both facilities contained combinations of chemical and biological treatment processes. The treatment processes used at the chemicals production facility and at the paint manufacturing facility were continuous and semi‐batch processes, respectively. The biological treatment section of the ETP at the chemicals production facility has both anaerobic and aerobic units, while the paint manufacturing facility has only an aerobic unit. Annual installation and operation costs of the ETP at the chemicals production facility was Bangladeshi Taka (Tk) 1,300,000 ($16,667 US dollars) and Tk 800,000 ($10,257), respectively. The annual installation and operation costs of the ETP at the paint manufacturing facility were Tk 3,050,000 ($39,103) and Tk 6,200,000 ($79,488), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号