首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Decabromodiphenyl ethane (deBDethane) is an additive flame retardant marketed as a replacement for decabromodiphenyl ether (decaBDE). The structures of the two chemicals are similar, and hence deBDethane may also become an environmental contaminant of concern. Environmental data on deBDethane are scarce. Since sewage sludge is an early indicator of leakage of these chemicals into the environment, an international survey of deBDethane and decaBDE levels in sludge was conducted. Samples were collected from 42 WWTPs in 12 different countries and analyzed with GC/LRMS. DeBDethane was present in sludge from all countries and may therefore be a worldwide concern. The levels of deBDethane in sludge samples from the Ruhr area of Germany were the highest so far reported in the literature (216 ng g−1 d.wt.). The [deBDethane]/[decaBDE] quotient for the whole data set ranged from 0.0018 to 0.83. High ratios were found in and around Germany where deBDethane imports are known to have been high and substitution of decaBDE with deBDethane is likely to have occurred. Low ratios were found in the USA and the UK, countries that have traditionally been large users of decaBDE. An estimate of the flux of deBDEthane from the technosphere via WWTPs to the environment within the European Union gave 1.7 ± 0.34 mg annually per person. The corresponding value for decaBDE was 41 ± 22 mg annually per person.  相似文献   

2.
《Chemosphere》2009,74(11):1799-1804
Decabromodiphenyl ethane (deBDethane) is an additive flame retardant marketed as a replacement for decabromodiphenyl ether (decaBDE). The structures of the two chemicals are similar, and hence deBDethane may also become an environmental contaminant of concern. Environmental data on deBDethane are scarce. Since sewage sludge is an early indicator of leakage of these chemicals into the environment, an international survey of deBDethane and decaBDE levels in sludge was conducted. Samples were collected from 42 WWTPs in 12 different countries and analyzed with GC/LRMS. DeBDethane was present in sludge from all countries and may therefore be a worldwide concern. The levels of deBDethane in sludge samples from the Ruhr area of Germany were the highest so far reported in the literature (216 ng g−1 d.wt.). The [deBDethane]/[decaBDE] quotient for the whole data set ranged from 0.0018 to 0.83. High ratios were found in and around Germany where deBDethane imports are known to have been high and substitution of decaBDE with deBDethane is likely to have occurred. Low ratios were found in the USA and the UK, countries that have traditionally been large users of decaBDE. An estimate of the flux of deBDEthane from the technosphere via WWTPs to the environment within the European Union gave 1.7 ± 0.34 mg annually per person. The corresponding value for decaBDE was 41 ± 22 mg annually per person.  相似文献   

3.
4.
Anderson Td  MacRae JD 《Chemosphere》2006,62(7):1153-1160
Polybrominated diphenyl ethers (PBDEs) are one class of flame retardants commonly used in textiles, foams and plastics. They are similar in behavior to the well-studied polychlorinated biphenyls and growing evidence suggests they are widespread global environmental pollutants that are capable of bioaccumulation. Fish tissue samples were collected from sites along the Penobscot River in central Maine. The total concentration of tetra- to hepta-PBDEs in these samples were calculated and generally increased from upstream to downstream locations ranging from 800 to 1810 ng/g lipid at the northernmost site to 5750-29000 ng/g at the downstream sampling site. BDE-47, 99 and 100 were the predominant congeners found in the fish tissue. Wastewater treatment plants (WWTPs) are one of the potential sources of these compounds to the environment through effluent discharge and landspreading of biosolids. Influent, effluent, activated sludge and dewatered biosolids were collected and analyzed for PBDE congeners from a WWTP at Orono, Maine. PBDE congeners were detectable in effluent samples at concentrations from 0.31 to 0.90 microg/l, in the activated sludge at 1.32-3.8 microg/l and in the influent at 4.2-4.3 microg/l, but the majority of the material was concentrated in the biosolids. Total concentration in the biosolids was 2320-3530 microg/kg dry weight.  相似文献   

5.

Purpose

This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign.

Methods

Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP.

Results

Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank.

Conclusions

The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.  相似文献   

6.

Purpose

Perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and precursors and derivatives thereof have been employed as surfactants and anti-adhesives. PFOA and PFOS are environmentally persistent and the discharge of municipal waste waters is one of the principal routes of these compounds into the aquatic environment. In a previous study, the concentrations of PFOA and PFOS in grab samples collected from the waste water treatment plant (WWTP) of Bayreuth, a city of 72,000 inhabitants in Bavaria, Germany, during two periods showed considerable variability. For a better estimate of average mass flows, the surfactants were monitored (five samplings) from 16 March to 18 May 2007. In a second campaign, river water receiving the WWTP effluent was sampled twice a day for five consecutive days.

Methods

Quantitative analysis was done by stable-isotope dilution, pre-cleaning, and pre-concentration by solid-phase extraction, and liquid chromatography followed by electrospray ionization/tandem mass spectrometry.

Results

The mass flows of PFOA and PFOS through the WWTP were determined. PFOA is fully discharged into the river, while about half of PFOS is retained in the sewage sludge. The average daily mass load of the river Roter Main by the WWTP of Bayreuth is about 1.2?±?0.5 g PFOA and 5?±?2 g PFOS, with variations of up to 140% within one day.

Conclusion

Overall, the total annual release to the rivers of Germany may be in the range of several hundred kilograms of PFOA and several tons of PFOS.  相似文献   

7.
Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7,030 ng/l, 13 to 5,400 ng/l, and 66 to 790 ng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at <0.02-36 microg/g dry weight, AHTN at <0.02-7.2 microg/g dry weight, and HHCB-lactone at <0.05-17 microg/g dry weight. Based on the daily flow rates and mean concentrations of polycyclic musks, the estimated discharge of total polycyclic musks to the rivers was 21 g/day from Plant A and 31 g/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two WWTPs ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.  相似文献   

8.
污泥厌氧消化液中含有丰富的氮磷,若直接排放到环境中,将会对附近水体造成严重污染。由于消化液中Mg^2+和Ca^2+的含量很低,严重影响了氮磷的回收效果。把造纸白泥和粉煤灰引入到污泥厌氧消化液氮磷的回收当中,可以明显地提升消化液pH和提高PO4^3-P和NH3-N回收率。实验结果表明:当造纸白泥添加量为4g/(L·h)时,曝气12h后,pH可达10.19,此时PO4^3-P和NH3-N回收率分别达到64%和45%;而当粉煤灰添加量为4g/(L·h)时,曝气12h后,pH达到9.63,PO4^3-P和NH3-N回收率分别为46%和41%。但仅用曝气方式处理,12h后,pH值仅为8.52,PO4^3-P和NH3-N回收率分别只有20%和18%。实验结果还表明,水力停留时间(HRT)越大,pH上升速度越快,幅度越大,氮磷的回收效果就越好。  相似文献   

9.
BACKGROUNDS: Perfluorinated compounds (PFCs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. Wastewater treatment plants (WWTPs) are fundamental utilities in cities, playing an important role in preventing water pollution by lowering pollution load in waste waters. However, some of the emerging organic pollutants, like PFCs cannot be efficiently removed by traditional biological technologies in WWTPs, and some even increase in effluents compared to influents due to the incomplete degradation of precursors. Hence, WWTPs are considered to be a main point source in cities for PFCs that enter the aquatic environment. However, the mass flow of PFCs from WWTPs has seldom been analyzed for a whole city. Hence, in the present study, 11 PFCs including series of perfluoroalkyl carboxylic acids (PFCAs, C4-C12) and two perfluoroalkyl sulfonates (PFASs, C6 and C8) were measured in WWTP influents and effluents and sludge samples from six municipal WWTPs in Tianjin, China. Generation and dissipation of the target PFCs during wastewater treatment process and their mass flow in effluents were discussed. RESULTS: All the target PFCs were detected in the six WWTPs, and the total PFC concentration in different WWTPs was highly influenced by the population density and commercial activities of the corresponding catchments. Perfluorooctanoic acid (PFOA) was the predominant PFC in water phase, with concentrations ranging from 20 to 170 ng/L in influents and from 30 to 145 ng/L in effluents. Concentrations of perfluoroalkyl sulfonates decreased substantially in the effluent compared to the influent, which could be attributed to the sorption onto sludge, whereas concentrations of PFOA and some other PFCAs increased in the effluent in some WWTPs due to their weaker sorption onto solids and the incomplete degradation of precursors. Perfluorooctane sulfonic acid (PFOS) was the predominant PFC in sludge samples followed by PFOA, and their concentrations ranged from 42 to 169 g/kg and from 12 to 68 g/kg, respectively. Sludge-wastewater distribution coefficients (log K(d)) ranged from 0.62 to 3.87 L/kg, increasing with carbon chain length of the homologues. The mass flow of some PFCs in the effluent was calculated, and the total mass flow from all the six municipal WWTPs in Tianjin was 26, 47, and 3.5 kg/year for perfluorohexanoic acid, PFOA, and PFOS, respectively.  相似文献   

10.
Nakata H  Kannan K  Jones PD  Giesy JP 《Chemosphere》2005,58(6):759-766
The occurrence of quinolone antibiotics (QAs) was investigated in wastewater effluents and surface river/lake waters in the US and Canada by using solid-phase extraction with mixed phase cation exchange disk cartridge and liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography fluorescence detection (LC-FLD). Ofloxacin (OFL) was detected in secondary and final effluents of a wastewater treatment plant (WWTP) in East Lansing, Michigan, at concentrations of 204 and 100 ng/l, respectively. The mass flow calculation, estimated by multiplying the OFL concentration in the final effluent by the average influent volume of the WWTP, showed that the discharge of OFL to the river was 4.8 g/day. The OFL concentrations in wastewater effluents measured in this study are comparable to or less than those observed in several European countries. QAs were not detected in river and lake waters analyzed in this study, which may due to dilution effects and to the higher detection limits, relative to those reported previously. OFL concentrations were approximately 1-2 orders of magnitude lower than the EC50 concentrations for environmental bacterium. However, greater concentrations of other QAs in sewage sludge from WWTPs may result in cumulative effects. Considering that the sewage sludge is applied to the land as fertilizers, soil-dwelling organisms could experience greater exposures to such antibiotics. Monitoring studies of QAs in sewage from WWTPs and in sediment/soil near aquaculture facilities and livestock farms will be necessary for the evaluation of the environmental distribution and risk of these compounds.  相似文献   

11.
The aim of this study was to develop a fugacity-based analysis of the fate of selected industrial compounds (alkylphenols and phthalates) with endocrine disrupting properties in a conventional activated sludge wastewater treatment plant (WWTP A) in South East Queensland, Australia. Using mass balance principles, a fugacity model was developed for correlating and predicting the steady-state-phase concentrations, the process stream fluxes, and the fate of four phthalates and four alkylphenols in WWTP A. Input data are the compound's physicochemical properties, measured concentrations and the plant's operating design and parameters. The relative amounts of chemicals that are likely to be volatilized, sorbed to sludge, biotransformed, and discharge in the effluent water was determined. Since it was difficult to predict biotransformation, measured concentrations were used to calibrate the model in terms of biotransformation rate constant. Results obtained by applying the model for the eight compounds showed <40% differences between most of the estimated and measured data from WWTP A. All eight compounds that were modelled in this study had high removal efficacy from WWTP A. Apart from benzyl butyl phthalate and bisphenol A, the majority is removed via biotransformation followed by a lesser proportion removed with the primary sludge. Fugacity analysis provides useful insight into compound fate in a WWTP and with further calibration and validation the model should be useful for correlative and predictive purposes.  相似文献   

12.
In this study, the occurrence of trace amounts of natural and synthetic steroid estrogens in the aquatic environment was studied using liquid chromatography coupled with electrospray mass spectrometry, following solid-phase extraction (SPE). The SPE was performed with C18 and NH2 cartridges. The first objective was to develop a reliable method for analyzing steroid estrogens (resulting from human and animal excretions) in different matrices. The method developed was then applied to quantify the occurrence of natural and synthetic hormones (estrone [E1], 17beta-estradiol [betaE2], 17alpha-estradiol [alphaE2], estriol [E3], and 17alpha-ethinylestradiol [EE2]) in environmental samples in surface water and wastewater treatment plant (WWTP) influent and effluent. In the WWTP influents, betaE2, alphaE2, and E3 were identified as ranging up to 72.6 ng/L in WWTP influent and to 16 ng/L in WWTP effluent. Analysis o f surface wa ter sampled upstream from the WWTP revealed the presence of all five estrogens, at levels up to 19.8 ng/L. These concentrations of estrogens pose an issue for large and small communities, because they are higher than the recommended guidelines for estrogen-active compounds and because a lot of communities use surface water as drinking-water sources.  相似文献   

13.
Heidler J  Halden RU 《Chemosphere》2007,66(2):362-369
The antimicrobial agent triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS) is a member of a larger group of polychlorinated binuclear aromatic compounds frequently associated with adverse environmental and human health effects. Whereas the structure and function of TCS would suggest significant resistance to biotransformation, biological wastewater treatment currently is considered the principal destructive mechanism limiting dispersal of and environmental contamination with this compound. We explored the persistence of TCS in a typical full-scale activated sludge US sewage treatment plant using a mass balance approach in conjunction with isotope dilution liquid chromatography electrospray ionization mass spectrometry (ID-LC-ESI-MS) for accurate quantification. Average influent and effluent concentrations (mean +/- SD) of 4.7+/-1.6 and 0.07+/-0.06 microg 1(-1), respectively, revealed an apparent (liquid-phase) removal efficiency of 98+/-1%. However, further analyses demonstrated that the particle-active TCS (80+/-22% particle-associated in influent) was sequestered into wastewater residuals and accumulated in dewatered, digested sludge to concentrations of 30000+/-11000 microg kg-1. Overall, 50+/-19% (1640+/-610 g d-1) of the disinfectant mass entering the plant (3240+/-1860 g d-1) remained detectable in sludge, and less than half of the total mass (48+/-19%) was biotransformed or lost to other mechanisms. Thus, conventional sewage treatment was demonstrated to be much less effective in destroying the antimicrobial than the aqueous-phase removal efficiency of the plant would make believe. Furthermore, study findings indicate that the common practice of sludge recycling in agriculture results in the transfer of substantial quantities of TCS to US soils used, in part, for animal husbandry and crop production.  相似文献   

14.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

15.
The occurrence, behavior, and release of five acidic pharmaceuticals, including ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA), have been investigated along the different units in a tertiary-level domestic wastewater treatment plant (WWTP) in hyper-urbanization city of China (Shanghai). IBP was the most abundant chemicals among the measured in raw wastewater. The loads of the acidic pharmaceuticals in the WWTP influent ranged from 7.5 to 414 mg/day/1,000 inh, which were lower than those reported in the developed countries suggesting a less per capita consumption of pharmaceuticals in Shanghai. IBP obtained by highest removal (87 %); NPX and KEP were also significantly removed (69–76 %). However, DFC and CA were only moderately removed by 37–53 %, respectively. Biodegradation seemed to play a key role in the elimination of the studied pharmaceuticals except for DFC and CA. An annual release of acidic pharmaceuticals was estimated at 1,499 and 61.7 kg/year through wastewater and sludge, respectively, from Shanghai. Highest pharmaceuticals concentrations were detected in the effluent discharge point of the WWTP, indicating that WWTP effluent is the main source of the acidic pharmaceuticals to its receiving river. Preliminary results indicated that only DFC in river had a high risk to aquatic organisms. Nevertheless, the joint toxicity effects of these chemicals are needed to further investigate.  相似文献   

16.
Five estrogenic hormones (unconjugated?+?conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.  相似文献   

17.
Occurrence and fate of heavy metals in the wastewater treatment process   总被引:19,自引:0,他引:19  
The occurrence and the fate of heavy metals (Cd, Pb, Mn, Cu, Zn, Fe and Ni) during the wastewater treatment process were investigated in the wastewater treatment plant (WTP) of the city of Thessaloniki, northern Greece, operating in the activated sludge mode. For this purpose, wastewater and sludge samples were collected from six different points of the plant, namely, the influent (raw wastewater, RW), the effluent of the primary sedimentation tank (primary sedimentation effluent, PSE), the effluent of the secondary sedimentation tank (secondary sedimentation effluent, SSE), sludge from the primary sedimentation tank (primary sludge, PS), activated sludge from the recirculation stream (activated sludge, AS), and the digested/dewatered sludge (final sludge, FS).

The distribution of metals between the aqueous and the solid phase of wastewater was investigated. Good exponential correlation was found between the metal partition coefficient, logKp, and the suspended solids concentration. The mass balance of heavy metals in the primary, secondary and the whole treatment process showed good closures for all metal species. The relative distribution of individual heavy metals in the treated effluent and the sludge streams indicated that Mn and Cu are primarily (>70%) accumulated in the sludge, while 47–63% of Cd, Cr, Pb, Fe, Ni and Zn remain in the treated effluent.  相似文献   


18.
The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.  相似文献   

19.
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847 ng L−1 and 674-1383 ng L−1, respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment.  相似文献   

20.
The study reported in this paper examined the concentrations of nineteen perfluorochemicals (PFCs), including perfluoroalkyl sulfonates, carboxylates, and sulfonamides in samples collected from Hong Kong wastewater treatment plants (WWTPs) and sediments. The study was the first to use an external isolator column to assist in the quantification of PFCs in environmental samples without having to make internal modifications to a liquid chromatography system. Perfluorooctanesulfonate was found to be the dominant PFC pollutant in Hong Kong, and the WWTP sludge was the major sink of PFCs discharged from the urban areas. Compared to discharge influenced by industrial activities, much less perfluorooctanoate was found in waste streams. The significantly lower level of perfluorodecanesulfonate in WWTP sludge reflects the important influence of consumer products on PFC distribution. The dominance of even-chain length perfluoroalkyl carboxylates in all of the WWTP sludge samples investigated further suggests the strong aerobic degradation of fluorotelomer alcohols in WWTPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号