首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: The reuse of wastewaters for agricultural purposes is a common practice in many countries and is increasingly recommended by organizations that promote sustainable development. Yet, it is restricted by the potential negative impact of these materials on soil and crops. The aim of this study was therefore to evaluate the environmental impact of walnut husk washing waters (WHWW) and their organic fractions, in order to conceive their agricultural exploitation. DISCUSSION: Phytotoxicity tests and morphological investigations on representative plant species of horticultural interest indicated that WHWW and their organic fractions can elicit a concentration-dependent stimulating effect on the growth of radish, lettuce cv. cavolo Napoli with effects up to 165 %. An opposite inhibitory effect up to 70 % was observed on spinach and lettuce cv. Gentilina. Proapoptotic effects were observed by acridine orange/ethidium bromide assay in the species inhibited by WHWW treatment. High-performance liquid chromatography-mass spectrometry analysis of the WHWW revealed the presence of a main component which was extracted selectively in organic solvents and purified by preparative chromatography. Complete spectral analysis allowed identification as 4,8-dihydroxy-1-tetralone, commonly known as regiolone. Regiolone exhibited the same concentration-dependent activity on root elongation with a stimulation in the case of radish up to 135 % with respect to control. These results open perspectives in the exploitation of WHWW and the main phenolic constituent readily available by a straightforward isolation procedure as a natural fertilizer for specific crops.  相似文献   

2.
Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone # 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air.  相似文献   

3.
This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl – 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn2+ kg?1 in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn2+ kg?1.  相似文献   

4.
Responses of free amino acids to botanical assimilation of free cyanide were investigated. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in nutrient solution amended with free cyanide (KCN). Cyanide was analyzed in solution as well as in plant materials to estimate the phyto-assimilation potential. Free amino acids in different parts of plants were also measured to determine metabolic responses to KCN exposure. Phyto-assimilation of KCN was obvious, and the rates were positively correlated to the concentration supplied. Although changes in total amino acid content in plant materials were negligible during KCN metabolism (p?>?0.05), responses of different amino acids to KCN treatments were quite different. All treatments with KCN increased the content of proline (Pro) and isoleucine (Ile) in roots significantly compared with control (p?<?0.05), while changes of aspartic acid, lysine, and histidine in roots were more evident at higher KCN treatments (p?<?0.05). Results indicate that the content of Pro, Ile, and tyrosine showed pronounced increase in shoots of rice seedlings exposed to KCN at 1.44 mg CN/L or higher (p?<?0.05). Other amino acids slightly changed in all plant materials exposed to KCN (p?>?0.05). Results indicate that specific amino acids in rice seedlings showed positive response to non-toxic concentrations of exogenous KCN. These findings could provide additional insights into the inducible mechanisms underlying the involvement of amino acids in KCN metabolism.  相似文献   

5.
6.
The cost effective benefits of yielding a flue gas desulfurization (FGD) sludge predominantly composed of CaSO4·2H2O, have been previously established. The recovery of this material as FGD by-product gypsum has been demonstrated abroad. Recently U.S. wallboard manufacturers have recognized the viability of this recovery practice. Such techno-economic decision making variables as a) by-product specification, b) transportation costs, and c) location of suitable FGD systems enable the recognition of FGD by-product recovery. Recent investigations of resultant solids content and chloride washing reflect the technical possibility of delivering a suitable product. Commercial and economic factors favor recovery based upon rising disposal and transportation costs. Existing and near term proposed systems surface the technical and commercial problems faced by utilities considering recovery.

Generation of an oxidized FGD sludge consisting of 90+% CaSO4·2H2O and dewatered to 80+% solids is technically achievable by air sparging within the FGD system. Although the product is suitable for land disposal, electric power utilities should consider and evaluate by-product recovery. U.S. wallboard manufacturers have established technical criteria for FGD by-product gypsum. Percent CaSO4·2H2O, final solids content, particle size, and chloride content are primarily technical parameters. Technology exists within the FGD industry to satisfy these criteria and results are discussed.

Economic factors comparing mining costs, transportation costs, and disposal costs are developed for specific utility projects. Such comparison established generalized financial criteria for a given utility to develop the economic reasonableness of considering FGD byproduct recovery.

End product user perspectives are presented providing electric utilities with a realistic appreciation for by-product recovery potential. Location of existing wallboard plants highlight potential recovery regions. Quality control problems are discussed in terms of generating a by-product rather than a disposable material.  相似文献   

7.
In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible.  相似文献   

8.
Polycyclic aromatic hydrocarbons and heavy metals in the environment are a concern, and their removal to acceptable level is required. Phytoremediation, the use of plants to treat contaminated soils, could be an interesting alternative to conventional remediation processes. This work evaluates the role of single and combined applications of chelates to single or mixed Cr + benzo[a]pyrene (B[a]P)-contaminated soil. Medicago sativa was grown in contaminated soil and was amended with 0.3 g citric acid, 0.146 g ethylenediaminetetraacetic acid (EDTA), or their combination for 60 days. The result shows that in Cr-contaminated soil, the application of EDTA + citric acid significantly (p?<?0.05) decreased the shoot dry matter of M. sativa by 55 % and, as such, decreased the Cr removal potential from the soil. The soluble Cr concentration in single Cr or Cr + B[a]P-contaminated soil was enhanced with the amendment of all chelates; however, only the application of citric acid in Cr-contaminated soil (44 %) or EDTA and EDTA + citric acid in co-contaminated soil increased the removal of Cr from the soil (34 and 54 %, respectively). The dissipation of B[a]P in single B[a]P-contaminated soil was effective even without planting and amendment with chelates, while in co-contaminated soil, it was related to the application of either EDTA or EDTA + citric acid. This suggests that M. sativa with the help of chelates in single or co-contaminated soil can be effective in phytoextraction of Cr and promoting the biodegradation of B[a]P.  相似文献   

9.
Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8–8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha?1 harvest?1): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha?1 harvest?1) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.  相似文献   

10.
One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p?<?0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p?<?0.05), and some influence on vegetable leaves (p?<?0.05), but no significant influence on Hg accumulation in grass leaves (p?>?0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g–1, respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m–3.  相似文献   

11.
Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.  相似文献   

12.
Evaluation of olive oil mill wastewater toxicity on spinach   总被引:1,自引:1,他引:0  

Background, aim, and scope

Olive oil mill wastewater (OMW), a by-product of the olive oil extraction process, is annually produced in huge amounts in olive-growing areas and represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:20 and 1:10) on spinach plants in order to evaluate OMW dilutions as a low-cost alternative method for the disposal of this waste.

Materials and methods

The effects of OMW dilutions were evaluated on seed germination, shoot and root elongation, biomass production, nutrient uptake and translocation, ascorbic acid content, polyphenols, photosynthetic pigments, and photosynthetic performance of spinach.

Results

Plant biomass was more affected than plant height and total chlorophyll; carotenoid and ascorbic acid content progressively decreased with decreasing OMW dilution. Exposure to both OMW dilutions resulted in overaccumulation of total polyphenols, which were negatively correlated to plant biomass and nutrients. Nutrient (Fe, Ca, and Mg) content was insufficient leading to reduced growth. Water use efficiency decreased mainly due to decreased CO2 assimilation rate rather than to a decline of transpiration rate. Disturbances in photosystem II (PSII) photochemical efficiency could be better envisaged by the ratio between variable fluorescence and initial fluorescence (Fv/Fo), which showed much greater amplitude than the maximal photochemical efficiency of PSII photochemistry (Fv/Fm).

Conclusions

From the data obtained, it is suggested that 1:20 OMW dilutions are still phytotoxic and that higher OMW dilutions should be used in order to use this waste for the irrigation of spinach plants.  相似文献   

13.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   

14.
The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus?×?Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus?×?H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the interspecific hybridization. The ability of EDTA to prevent Pb absorption by the plants could underly the mechanism of limiting of the negative impact of Pb ions. Hence, EDTA cannot be used to enhance Pb absorption from nutrient solution by sunflower plants for phytoremediation purposes.  相似文献   

15.
Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P?P?U. reticulata > A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P?相似文献   

16.
The relationship between ozone and the northern root-knot nematode on tobacco was investigated. Seedlings of tobacco (Nicotiana tabacum L.) cv. Virginia 115 were inoculated and not inoculated with root-knot (Meloidogyne hapla (Chitwood) prior to transplanting to a field plot. One-half the plants were sprayed at weekly intervals with an antioxidant, EDU at the rate of 1 kg ha−1 to protect against oxidant injury. O3 concentrations in excess of 80 ppb were recorded 14 times during the summer of 1982. Ambient ozone inhibited growth and yield of tobacco inoculated and not inoculated with M. hapla. Tobacco inoculated with nematode alone developed significantly more ozone injury than other treatments indicating that tobacco infected with M. hapla is more susceptible to ambient O3. Significantly 20% more galls developed on plants with nematode inoculation compared to plants with nematode inoculation + EDU indicating that EDU indirectly reduced gall development in tobacco. Plants protected with EDU also showed an increase in dry weight of shoot, root and biomass.  相似文献   

17.
Irrigation with cyanobacterial-blooming water containing microcystin-LR (MC-LR) poses threat to the growth of agricultural plants. Large amounts of rice (Oryza sativa) field in the middle part of China has been irrigating with cyanobacterial-blooming water. Nevertheless, the mechanism of MC-LR-induced phytotoxicity in the root of monocot rice remains unclear. In the present study, we demonstrate that MC-LR stress significantly inhibits the growth of rice root by impacting the morphogenesis rice crown root. MC-LR treatment results in the decrease in IAA (indole-3-acetic acid) concentration as well as the expression of CRL1 and WOX11 in rice roots. The application of NAA (1-naphthylacetic acid), an IAA homologue, is able to attenuate the inhibitory effect of MC-LR on rice root development. MC-LR treatment significantly inhibits OsNia1-dependent NO generation in rice roots. The application of NO donor SNP (sodium nitroprusside) is able to partially reverse the inhibitory effects of MC-LR on the growth of rice root and the expression of CRL1 and WOX11 by enhancing endogenous NO level in rice roots. The application of NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] eliminates the effects of SNP. Treatment with NAA stimulates the generation of endogenous NO in MC-LR-treated rice roots. Treatment with NO scavenger cPTIO abolishes the ameliorated effect of NAA on MC-LR-induced growth inhibition of rice root. Treatment with SNP enhanced IAA concentration in MC-LR-treated rice roots. Altogether, our data suggest that NO acts both downstream and upstream of auxin in regulating rice root morphogenesis under MC-LR stress.  相似文献   

18.
19.

Introduction

The toxic effect of the oxidation hair dyes on Phanerochaete chrysosporium was investigated by exposure of this fungus in a nitrogen-limited culture medium to various concentrations of the oxidation hair dyes.

Results

The results showed that both the size and the dry weight of the mycelial pellets of P. chrysosporium could be reduced when the concentration of the oxidation hair dyes was higher than 300?mg/L. By using the AFLP analysis and the UPGMA dendrogram, the DNA damage of P. chrysosporium by the oxidation hair dyes was also detected. Comparing with that in the control, the percent polymorphism under different concentrations of the oxidation hair dyes increased. In the meantime, the DNA similarity was decreased, which meant that the DNA damage was aggravated with an increase in the concentrations of the oxidation hair dyes.

Conclusion

Thus, as an environmental pollutant, the oxidation hair dyes have a toxic effect on P. chrysosporium at both cellular and molecular levels.  相似文献   

20.
The objectives of this research were to study the effects of Na2SiO3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na2SiO3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L3-edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na2SiO3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na2SiO3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na2SiO3 increased Pb-ferrihydrite and PbSiO3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO3 and the association of Pb2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO3 on the root surfaces or inside the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号