首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: This study examined the disposition of streamflow increases that could be created by vegetation management on forest land along the upper reaches of the Colorado River. A network optimization model was used to simulate water flow, storage, consumptive use, and loss within the entire Colorado River Basin with and without the flow increases, according to various scenarios incorporating both current and future consumptive use levels as well as existing and potential institutional constraints. Results indicate that very little of the flow increases would be consumptively used at current use levels, or even at future use levels, if water allocation institutions remain unchanged. Given future use levels and economically based water allocation institutions, up to one-half of the flow increases could be consumptively used. The timing of streamflow increases, and the institutional constraints on water allocation, often limit the potential for consumptive use of flow increases.  相似文献   

2.
ABSTRACT: The salinity of the lower South Platte River in Colorado is characterized by plotting the average annual flow, total dissolved solids, and salt mass flow against distance along the stream. The plots show that salts are being leached from the irrigated lands above Greeley and are being deposited on the irrigated lands below Greeley. The salt deposition on the lower lands will result in their salination. The plots show also that fall and winter stream flows carry most of the salt loads. These fall and winter flows are stored in off stream reservoirs for use during the irrigation season. Therefore these salts are transferred to the lower irrigated lands where they accumulate. The salt balance for these lands can be improved by permitting the fall and winter flows to leave the basin, or by providing adequate land drainage coupled with supplemental irrigation water.  相似文献   

3.
ABSTRACT: Law and hydrology are inextricably woven together in the pattern of water resource development in the west. The former attempts to allocate a limited and valuable resource as the latter tries to define the limits of the resource. In the past an inadequate data base has made hydrologic estimates difficult and political factors have pushed the law into possibly conflicting commitments in the Colorado River Basin. Through the use of tree-ring research, hydrologists have produced a more definitive data base and placed water allocations such as the Colorado River Compact of 1922 in a clearer long-term perspective. This data base leads to the conclusion that the surface-water supply is about 13.5 million acre-feet per year. This hydrologic limit must be apportioned within an existing legal framework - the “Law of the River.” As development approaches the resource limit in the Upper Colorado River Basin, lawyers and hydrologists must act in concert toward the equitable solution of allocation and reallocation problems.  相似文献   

4.
ABSTRACT: The methodology underlying, and the estimates incorporated in the Corps of Engineers' economic evaluation of the Arkansas River Basin Chloride Control Project are evaluated and judged deficient in several ways. An improperly specified alternative cost analysis probably results in overestimates of the total regional demand for water, the demand for Arkansas River Water, and the cost-savings realized with the project in place. The quantitative effect of these errors is not determined. However, other adjustments are identified which are evaluated using the Corps' data. These adjustments reduce B/C from 2.64 to 0.57; principally as a result of corrections for over-estimates of cost-savings in steam-electric generation, and for use of improper discounting procedures and gross output-earnings ratios.  相似文献   

5.
ABSTRACT The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards; (3) limit development; (4) control salt discharges at a cost equal to the cost of doing nothing, or (5) minimize total costs to the basin. Total costs associated with any given alternative, or the given salinity resulting, are the sum of salinity detriments (cost to users for water of increased salinity plus economic multiplier effects) plus the cost of constructing salt discharge control works. These impacts upon basin economy and Colorado River water quality for each alternative are presented and related to questions of equity which will play a role in arriving at any long-term solution to the Basin's problem.  相似文献   

6.
ABSTRACT: This study emphasized a field investigation of salt release to overland flow from Mancos shale lands of the Price River Basin, Utah. Although a high degree of natural variation existed in the data, which precluded the separation of factors affecting diffuse salt loading that occurs during overland flow, a simplistic nonpoint source loading function developed on empirical concepts was fit to the data. This function was then used to calculate the average annual salt yield to the Price River by overland flow. It was found that even under severe conditions, the salt yields from Mancos shale lands due to overland flow is relatively minor, accounting for less than 1.5 percent of the average annual salt mass transported from the basin by the Price River.  相似文献   

7.
ABSTRACT: Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water‐quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground‐water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground‐water quality in the study area.  相似文献   

8.
ABSTRACT: As part of a basinwide water-quality study, nitrogen and phosphorus data for the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide were analyzed for spatial distributions, concentrations associated with various land uses, and temporal trends. Nitrogen and phosphorus concentrations generally increased in a downstream direction. Some nutrient concentrations were elevated at some sites in the upper parts of the basin in areas influenced by increasing urbanization. Sites were grouped according to land use and site type, and median nutrient concentrations were compared among groups. Sites within the agricultural areas of the basin generally had the highest concentrations of nitrogen and phosphorus; concentrations for main-stem, tributary, and urbanization sites were slightly lower than for the agricultural sites. Background sites, or sites with minimal land-use impacts, had very low median nutrient concentrations. Several sites with long-term data were analyzed for temporal trends in concentrations. Several statistically significant downward trends of low and moderate magnitude were observed for nitrogen and phosphorus species. No upward trends were observed in the data at any site.  相似文献   

9.
ABSTRACT: This paper presents a summary of the findings and recommendations of the studies of severe, sustained drought reported in this special issue. The management facilities and institutions were found to be effective in protecting consumptive water users against drought, but much less effective in protecting nonconsumptive uses. Changes in intrastate water management were found to be effective in reducing the monetary value of damages, through reallocating shortages to low-valued uses, while only water banking and water marketing, among the possible interstate rule changes, were similarly effective. Players representing the basin states and the federal government in three gaming experiments were unable to agree upon and effect major changes in operating rules. The conclusions are (1) that nonconsumptive water uses are highly vulnerable to drought, (2) that consumptive uses are well-protected, (3) that drought risk is greatest in the Upper Basin, (4) that the Lower Basin suffers from chronic water shortage but bears little drought risk, (5) that opportunities exist for win-win rule changes, (6) that such rule changes are extremely difficult to make, and (7) that intrastate drought management is very effective m in reducing potential damages.  相似文献   

10.
ABSTRACT: In many interstate river basins, the institutional arrangements for the governance and management of the shared water resource are not adequately designed to effectively address the many political, legal, social, and economic issues that arise when the demands on the resource exceed the available supplies. Even under normal hydrologic conditions, this problem is frequently seen in the Colorado River Basin. During severe sustained drought, it is likely that the deficiencies of the existing arrangements would present a formidable barrier to an effective drought response, interfering with efforts to quickly and efficiently conserve and reallocate available supplies to support a variety of critical needs. In the United States, several types of regional arrangements are seen for the administration of interstate water resources. These arrangements include compact commissions, interstate councils, basin interagency committees, interagency-interstate commissions, federal-interstate compact commissions, federal regional agencies, and the single federal administrator. Of these options, the federal-interstate compact commission is the most appropriate arrangement for correcting the current deficiencies of the Colorado River institution, under all hydrologic conditions.  相似文献   

11.
ABSTRACT: A selenium budget for Lake Powell, Utah-Arizona was determined based on selenium loads at the principal stream input sites to and the output site from the lake. Based on data collected during 1985-1994, 83 percent of the selenium entering Lake Powell is accounted for at the output site. The rest of the selenium may be incorporated by lake sediment or used by the biota. Considerably more selenium per unit area is produced from the Colorado River Basin above the Colorado River-Green River confluence than from the Green River Basin and the San Juan River Basin combined. The Gunnison River Basin and the Grand Valley in Colorado produce an estimated 31 and 30 percent of the selenium that reaches Lake Powell, respectively. Irrigation-related activities are thought to be responsible for mobilizing 71 percent of the selenium that reaches Lake Powell. Selenium concentrations in water at Imperial Dam on the Colorado River upstream of the United States-Mexico international border are similar to those at the output site of Lake Powell. Therefore, most selenium observed in downstream areas of the Colorado River therefore probably is derived mostly from the Colorado River Basin above Lake Powell.  相似文献   

12.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

13.
ABSTRACT: Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were measured in streams and ground water beneath the streams at 23 sites in the South Platte River basin of Colorado, Nebraska, and Wyoming to assess: (1) the role of ground water as a source of nutrients and atrazine to streams in the basin, and (2) the effect of land-use setting on this process. Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were higher in ground water than in the overlying streams at 2, 12, 12, and 3 of 19 sites, respectively, where there was not a measurable hydraulic gradient directed from the stream to the ground water. Orthophosphate was the only constituent that had a significantly higher (p ≤ 0.05) concentration in ground water than in surface water for a given land-use setting (range land). Redox conditions in ground water were more important than land-use setting in influencing whether ground water was a source of elevated nitrite plus nitrate concentrations to streams in the basin. The ratios of nitrite plus nitrate in ground water/surface were were significantly lower (p ≤ 0.05) at sites having concentrations of dissolved oxygen in ground water ≤ 0.5 mg/L than at sites having dissolved oxygen concentrations ≥ 0.5 mg/L. Elevated concentrations of ammonia or atrazine in ground water occurred at sites in close proximity to likely sources of ammonia or atrazine, regardless of land-use setting. These results indicate that land-use setting is not the only factor that influences whether ground water is a source of elevated nutrient and atrazine concentrations to streams in the South Platte River Basin.  相似文献   

14.
15.
ABSTRACT: Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this “gaming” exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as the “Law of the River.” The Law of the River was quite effective in minimizing drought impacts upon consumptive water uses. Additional effective drought-coping measures to protect consumptive uses consisted mostly of intrastate water management improvements which states were able to implement independently. The Law of the River did not protect non-consumptive water uses, such as hydroelectric power generation, water-based recreation, endangered species, and water quality from drought, as well as it protected consumptive water uses. Players reached collective choice decisions to cope with rising salinity, equalize storage between the upper and lower basins, and protect endangered species. While these measures had some success, only reductions in withdrawals for consumptive uses, particularly in the upper basin, could have substantially lessened adverse impacts.  相似文献   

16.
ABSTRACT: Although the effects of vegetation management on streamflow have been studied in many locations, the effects of augmented streamflow on downstream water users have not been carefully analyzed. This study examines the routing of streamflow increases that could be produced in the Verde River Basin of Arizona. Reservoir management and water routing to users in the Salt River Valley around Phoenix were carefully modeled. Simulation of water routing with and without vegetation modification indicates that, under current institutional conditions, less than one-half of the streamflow increase would reach consumptive users as surface water. Most of the remainder would accumulate in storage until a year of unusually heavy runoff, when it would add to reservoir spills. Under alternative scenarios, from 39 to 58 percent of the streamflow increase was delivered to consumptive users.  相似文献   

17.
ABSTRACT: The application of a low-flow assessment model is illustrated for the Monogahela River Basin. The model simulates the impact of reservoir operating rules and consumptive use limitation policies on low-flow frequency at downstream locations in the basin. Policies are evaluated using an observed flow sequence and synthetic flow inputs. The paper reviews the historical development of flow management on the Monogahela to provide background for the current study.  相似文献   

18.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

19.
ABSTRACT: The maximum concentration of a regulated substance that is allowed in a wastewater effluent usually is determined from the amount of dilution provided by the receiving water. Dilution flow is estimated from historical data by application of statistical criteria that define low flow conditions for regulatory purposes. Such use of historical data implies that the past is a good indicator of future conditions, at least for the duration of a discharge permit. Short records, however, introduce great uncertainty in the estimation of low flows because they are unlikely to capture events with recurrence frequencies of multiple years (e.g., ENSO events or droughts). We conducted an analysis of daily flows at several gages with long records in the South Platte River basin of Colorado. Low flows were calculated for successive time blocks of data (3‐, 5‐, 10‐, and 20‐years), and these were compared with low flows calculated for the entire period of record (> 70 years). In unregulated streams, time blocks of three or five years produce estimates of low flows that are highly variable and consistently greater than estimates derived from a longer period of record. Estimates of low flow from 10‐year blocks, although more stable, differ from the long term estimates by as much as a factor of two because of climate variation. In addition, the hydrographs of most streams in Colorado have been influenced by dams, diversions, or water transfers. These alterations to the natural flow regime shorten the record that is useful for analysis, but also tend to increase the calculated low flows. The presence of an upward trend in low flows caused by water use represents an unanticipated risk because it fails to incorporate societal response to severe drought conditions. Thus, climate variability poses a significant risk for water quality both directly, because it may not be represented adequately in the short periods of the hydrologic record that are typically used in permits, and indirectly, through its potential to cause altered use of water during time of scarcity.  相似文献   

20.
ABSTRACT: In arid regions of rapid economic and population growth, adverse effects of droughts are likely to be increasingly serious. This article presents an introduction and overview of the papers collected in this special issue of the Water Resources Bulletin. The papers report on the second phase of a study of the impacts of and responses to a potential severe sustained drought in the Colorado River Basin in the southwestern U.S. The analyses were performed by a consortium of researchers from universities and the private sector located throughout the Basin. Tree ring studies suggest that droughts of duration and magnitude much more serious than any found in the modern records probably occurred in the Basin during earlier centuries. Taking the present-day configuration of the storage and diversion structures and the economic conditions in the Basin as the base-point, the general objectives of the study are three: first, to define a representative Severe Sustained Drought (SSD) and assess its hydrologic impacts; second, to forecast the economic, social and environmental impacts on the southwestern U.S.; and finally, to assess alternative institutional arrangements for coping with an SSD. The evaluation of impacts and policies was conducted with two distinct modeling approaches. One involved hydrologic-economic optimization modeling where water allocation institutions are decision variables. The second was a simulation-gaming approach which allowed “players” representing each basin state to interact in a real-time decision making mode in response to the unfolding drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号