首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sinking rates of natural copepod fecal pellets   总被引:4,自引:0,他引:4  
Many pure samples of natural fecal pellets have been collected from mixed small copepods and from the pontellid copepod Anomalocera patersoni in the Ligurian Sea, using a specially designed pellet collection device. Sinking rates of fresh pellets and pellets aged up to 33 days have been determined at 14°C, the mean temperature of the essentially isothermal water column in the Ligurian Sea. Sinking rates of pellets collected during calm sea states increased with increasing pellet volume, but sinking rates of pellets collected during rough sea (Beaufort scale 6) showed little correlation with pellet size. Much of the variability in the sinking rate-pellet size relationships was the result of different pellet composition and compaction, but not pellet age. Pellets produced from laboratory diets of phytoplankton and phytoplankton-sediment mixes showed the expected wide variability in sinking rates, with sediment-ballasted pellets sinking much faster than pellets produced from pure algal diets; thus determination of vertical material fluxes in the sea using laboratory-derived fecal pellet sinking rates is unwarranted. Natural pellet sinking data for small copepods and A. patersoni have been combined with similar data for euphausiids, to yield sinking rates of roughly two orders of magnitude over three orders of magnitude in pellet volume. Pellets from small copepods sank at speeds too slow to be of much consequence to rapid material flux to the deep sea, but they undoubtedly help determine upper water distribution of materials. Recalculation of fecal pellet mass flux estimates from the literature, using our sinking rate data for natural small copepod pellets, yielded estimates about half those of previously published values. Earlier studies had concluded that small fecal pellets were of lesser significance to total material flux than fecal matter; our recalculation strengthens that conclusion. Pellets from large copepods and euphausiids, however, have the capability to transport materials to great depths, and probably do not substantially recycle materials near the surface. The fact that the majority of pellets which had previously been collected in deep traps by other workers were of a size comparable to pellets from our large copepods supports the contention that these larger pellets are the main ones involved in vertical flux.  相似文献   

2.
Sinking rates were determined for fecal pellets produced by gelatinous zooplankton (salps, Salpa fusiformis and Pegea socia; pteropods, Corolla spectabilis; and doliolids, Dolioletta gegenbaurii) feeding in surface waters of the California Current. Pellets from the salps and pteropods sank at rates up to 2 700 and 1 800 m d-1, respectively; such speeds exceed any yet recorded for zooplankton fecal pellets. Fecal pellets of salps were rich in organic material, with C:N ratios from 5.4 to 6.2, close to values for living plankton. The relation between volume and sinking rate indicates that salp and pteropod pellets are slightly less dense than those of pelagic Crustacea; moreover, pellet density varied between different collection dates, probably because of differences in composition. In contrast, doliolid pellets sank at rates up to 208 m d-1, a rate much lower than would be expected from pellet size. Thus, density and sinking rates of pellets are much more variable in zooplankton than would be expected from studies of crustaceans alone. Moreover, the extraordinarily high sinking rates of fecal pellets of salps indicates that these tunicates may be disproportionately important in the flux of biogenic materials during periods when they form dense population blooms.  相似文献   

3.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   

4.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

5.
W. Yoon  S. Kim  K. Han 《Marine Biology》2001,139(5):923-928
Morphological characteristics and sinking velocities of naturally occurring fecal pellets of copepods, euphausiids, salps, and pelagic mollusks collected in the northeastern tropical Atlantic were investigated during the period of May-June 1992. The fecal pellets of copepods and euphausiids were cylindrical and distinguished only by their size. Those of salps were, in general, rectangular, and slight differences were noted according to the species. The fecal pellets of the molluscan pteropod Clio sp. were conical, while those of the molluscan heteropod Carinaria sp. were spiral. The sinking velocities ranged from 26.5 to 159.5 m day-1 for copepod fecal pellets, from 16.1 to 341.1 m day-1 for euphausiid pellets, from 43.5 to 1167.6 m day-1 for salps' pellets (Cyclosalpa affinis, Salpa fusiformis, Iasis zonaria, and two unidentified species), from 65 to 205.7 m day-1 for Clio sp. pellets, and from 120.3 to 646.4 m day-1 for Carinaria sp. fecal pellets. The measured sinking velocities were compared with estimates predicted using the equations of Komar et al. (1981; Limnol Oceanogr 26:172-180), Stokes' law, and Newton's second law, using either a constant density of fecal pellets (1.22 g cm-3) or densities estimated with the three different equations. When a constant density was used, the three equations overestimated the sinking velocities; Stokes' law resulted in the largest overestimation, and Newton's second law, the smallest. At the taxa level, the overestimation was greatest for euphausiid 1 fecal pellets and smallest for copepod fecal pellets. When the three equations were used to estimate fecal pellet density, the density estimated using the equation of Komar et al. was the greatest, and that using Stokes' law, the smallest, resulting in over- and underestimation of sinking velocities, respectively. Newton's second law resulted in an intermediate density and gave the closest estimate of sinking velocities. We propose that measurement of sinking velocities of a portion of the fecal pellets might guide in choosing an appropriate equation to be used for a reasonable interpretation of vertical mass flux.  相似文献   

6.
R. P. Harris 《Marine Biology》1994,119(3):431-439
Grazing and faecal pellet production by the copepods Calanus helgolandicus and Pseudocalanus elongatus, feeding on the coccolithophore Emiliania huxleyi, were measured under defined laboratory conditions, together with the chemical characteristics and sinking rates of the faecal pellets produced. Ingestion rates of both copepods were equivalent at comparable cell concentrations, the relationship between ingestion rate (I, cells copepod-1 h-1) and food concentration (C, cells ml-1), being I=0.558C for both species. P. elongatus produced a larger number of smaller faecal pellets than C. helgolandicus, but egested a larger volume of material per individual. Only between 27 and 50% of the ingested coccolith calcite was egested in the faecal pellets, and it is possible that acid digestion in the copepod gut is responsible for these considerable losses. Average sinking rates of faecal pellets containing E. huxleyi coccoliths, produced by both species, were >100 m d-1. The implications of the quantitative laboratory estimates for the vertical flux of inorganic carbon are considered using recently studied shelf-break and oceanic E. huxleyi blooms in the N. E. Atlantic as examples.  相似文献   

7.
The sinking rates of fecal matter from 7 southern California midwater fish species were investigated. Feces were obtained from 162 specimens of Stenobrachius leucopsarus, Triphoturus mexicanus, Leuroglossus stilbius, Lampanyctus ritteri, Argyropelecus affinis and Parvilux ingens, which were collected in the Santa Barbara and San Clemente Basins between 1977 and 1979. In addition, feces obtained from 6 laboratory-maintained specimens of the midwater zoarcid Melanostigma pammelas were used for repeated sinking-rate measurements. The mean of the measured sinking rates for all species was 1.19 cm s-1 (1 028 m d-1), which is much higher than the known descent rates of euphausiid and copepod fecal pellets and of most other particulate organic detritus. Dissolution characteristics were also investigated for fecal matter from 4 species collected by the same series of net hauls: S. leucopsarus, T. mexicanus, A. affinis, and Sternoptyx obscura. The release of dissolved organic compounds from this material is low and does not represent a significant output during the relatively short time required to sink through the water column. These findings suggest that midwater fish fecal matter may represent a major source of organic transfer between the pelagic community and the benthos.  相似文献   

8.
The contribution of fecal pellets to the benthos of the southeastern shelf of the USA is investigated through an analytic model which considers pellet production by different stage groups of the genus Paracalanus. Model results indicate that the concentration and vertical flux of pellets is a function of producer size and consumer size and abundance. Nauplii and adults, respectively, produce daily on the average 50 and 13% of total pellet mass, yet contribute 4 and 63%, respectively, to the daily pellet flux. Most of the pellets produced are consumed or degraded in the water column, with only 0.2% of the average daily primary production reaching the seafloor (35 m) as fecal pellets. This contributes to an impoverished benthos, such as that found on the southeastern continental shelf.  相似文献   

9.
Two abundant macrozooplankters, Oikopleura vanhoeffeni (Lohmann) and Calanus finmarchicus (Gunnerus) were collected from the coastal waters off Newfoundland in different seasons during 1990–1991 and incubated in natural seawater to collect freshly egested, field produced, fecal pellets. The densities of fecal pellets from O. vanhoeffeni and C. finmarchicus were measured in an isosmotic density gradient. These are the first reported seasonal measurements of fecal pellet densities from two different types of macrozooplankters, O. vanhoeffeni, a larvacean, filter feeder and C. finmarchicus, a crustacean, suspension feeder. Pellet density ranges and medians were significantly different among seasons for both species, depending primarily on the type of phytoplankton ingested and its ability to be compacted. Winter O. vanhoeffeni and fall C. finmarchicus feces filled with nanoplankters and soft bodied organisms had less open space [packing index (% open area) = 3.5 and 4% for O. vanhoeffeni and C. finmarchicus, respectively] and were more dense (1.23 and 1.19 g cm-3) than spring feces filled with diatoms (packing index = 15 and 23%, density = 1.13 and 1.11 gcm-3). For copepods, these results contrast with previously published density values and with the predicted copepod fecal pellet density calculated, in the present study, using the conventional mass/volume relationship. Copepod spring and summer diatom-filled feces had a calculated density of 1.12 and 1.24 gcm-3 vs a measured median density of 1.11 gcm-3 for both spring and summer feces; the fall feces containing nanoplankters had a calculated density of 1.08 gcm-3 vs a measured median density of 1.19 gcm-3. Knowledge of the seasonal variations in fecal pellet densities is important for the development of flux models.  相似文献   

10.
Fecundity, egg viability and fecal pellet production are reported for Acartia clausi females collected in the Bay of Naples, Italy, from April to October 1992 and fed either with a diatom (Thalassiosira rotula) or dinoflagellate (Prorocentrum minimum) diet, at food saturated conditions. The diatom diet significantly reduced both egg and fecal pellet production as well as hatching success. Blockage of egg development occurred with both axenic and non-axenic cultures of T. rotula, suggesting that inhibitors were provided by the diatoms and not by the bacteria associated with diatom cultures. Low hatching success was also artificially induced by exposing newly spawned A. clausi eggs to high concentrations of diatom extracts, indicating the presence of deleterious, inhibitory compounds blocking copepod embryogenesis. Fecundity and hatching success diminished significantly with female age. In contrast, female longevity was not significantly modified by food type. The presence of males did not significantly alter fecundity or egg viability. Females continued to produce viable eggs throughout the period of incubation, with and without males, in both food conditions, indicating that remating is infrequent and not necessary to sustain viable egg production in this species. The succession in low and high population densities may therefore be the outcome of variations in survival rates of eggs, rather than reproductive protential perse; such variations may strongly depend on the adult copepod diet.  相似文献   

11.
The chlorophyll derivatives, especially pyrochlorins, from macrobentho-pelagic fecal pellets were separated and identified using reversed-phase high-per-formance liquid chromatography-mass spectrometry (HPLC-MS). HPLC-frit-fast atom bombardment (FAB)-MS analysis of fecal pellet extracts was performed, and the ions at m/z (mass-to-charge ratio), 534 [M]+, 827 [M+H]+ and 812 [M]+ as base peaks contirm the presence of pyropheophorbide a, pyropheophytin b and pyropheophytin a, respectively. Identification of pyrochlorins in fecal pellets suggests that decarbomethoxylation of chlorophylls can occur during bentho-pelagic grazing and that pyrochlorins in sedimentary environments may be derived in part from fecal pellets.  相似文献   

12.
Adult females of the copepod Chiridius armatus inhabited the lower half of a 200-m water column during winter and spring. Their distribution became gradually shallower during summer and autumn. Female C. armatus carried out diel vertical migrations, with shallower population distribution at night compared to day, although normally with few individuals captured in the upper 50 m. Enumeration of fecal pellets produced by freshly collected individuals showed that C. armatus was foraging throughout the year. Production of fecal pellets was at a minimum in February and at a maximum in April. Individuals from all depths produced fecal pellets, but the numbers seemed to decrease by depth. Numbers of fecal pellets were greatest for individuals captured at night. The omnivorous C. armatus consistently produced many more fecal pellets than the concurrently studied, strictly carnivorous copepod Paraeuchaeta norvegica. We ascribe the relatively high number of fecal pellets to the higher content of indigestible components in plant material than in animal food. The assumption of phytoplankton as a prevailing food source got qualitative support from scanning electron microscope pictures, showing that fecal pellets mainly contained phytoplankton.Communicated by L. Hagerman, Helsingør  相似文献   

13.
The fecal pellets of zooplankton are thought to be major carriers of organic matter from surface to deeper waters of the oceans. As the pellets descend, they release soluble components, partially due to breakdown by associated microorganisms. Previous laboratory work of other investigators has suggested that the surface of a fecal pellet rapidly acquires bacteria, which increase in abundance until they and their protozoan consumers disrupt the pellet membrane, spilling contents into the water. In contrast, our field collections of fecal pellets from free-floating particle interceptor traps (from the Vertex project off Central California in 1980 and off Mexico in 1981), suggest that microbial decomposition probably is initiated in the sea from inside the fecal pellets. Transmission and scanning electron microscopy indicate that bacterial populations are most abundant in the interior of fecal pellets obtained from the sea, but that the same pellets will acquire the surface bacterial lawn typically observed in laboratory studies if maintained aboard ship. If the fecal pellets are decomposed from the inside, then the principal agents are enteric bacteria or ingested, digestion-resistant bacteria, or both. Such bacteria may differ metabolically from those that colonize the fecal pellet surfaces. Further-more, the abundance of healthy-appearing bacteria inside the pellets suggests that their metabolic activities may produce microhabitats of reduced oxygen tension that could differ considerably from that of the pellet exteriors. Decomposition in these semi-enclosed microenvironments may proceed in a manner not yet predicted by models that attribute decomposition to well-aerated, surface-dwelling bacterial populations on fecal pellets in the sea.  相似文献   

14.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

15.
The re-use of faecal pellets in the water column before sinking to the seafloor is known as an important pathway in marine food webs. Especially planktonic copepods seems to be actively use their faecal pellets. Since benthic copepods (order Harpacticoida) live in the vicinity of their pellets, it remains unclear how important these pellets are for their feeding ecology. In the present study a laboratory experiment was conducted to analyse the importance of faecal pellets for the feeding ecology of the harpacticoid Paramphiascella fulvofasciata and its grazing pressure on two diatom species (Seminavis robusta, Navicula phyllepta). By quantifying the amount and volume of the produced faecel pellets in different treatments, it was tested to what extent the food source and the lack of faecal pellets would influence the production of faecal pellets. We found that the grazing pressure of P. fulvofasciata depended on the diatom density since only a top-down effect could be found on the smaller Navicula cells during its initial exponential growth phase. The grazer had a negative effect on the diatom growth and controlled the cell density to about 4,000 cells/cm2. In spite of the fact that the addition of faecal pellets did not show a significant positive effect on the assimilation of diatoms, the removal of faecal pellets strongly promoted the pellet production. Especially when grazing on Navicula the harpacticoid P. fulvofasciata produced significantly more and smaller faecal pellets when the pellets were removed. This outcome illustrates the need for faecal pellets of this harpacticoid copepod when grazing on the diatom Navicula. Apart from its selection for smaller diatom cells, it was suggested that the colonisation of heterotrophic bacteria enriched these pellets. This study is the first to indicate that trophic upgrading occurs on faecal pellets and not only on the initial autotrophic food sources per se.  相似文献   

16.
Five sediment traps were moored at depths of 740, 940, 1 440, 3 440 and 4 240 m for 7 d in December 1982 at Station 5 in the eastern North Pacific about 400 km from San Francisco. Dark green sinking particles enclosed in tough membrane consisted of mostly coccolithophores with some diatoms, dinoflagellates and chrysophytes. The average size of the particles was 10x5x2 mm. These characteristics indicate that the particles were fecal pellets of salp inhabiting the surface waters. Vertical fluxes of the organic carbon and nitrogen through sinking of the salp fecal pellets ranged from 6.7 to 23 mgC m-2 d-1 and from 0.88 to 3.2 mgN m-2 d-1, respectively. These values were several times higher than those determined in other oceanic areas by sediment trap experiments. Hydrocarbons consisting of short-chain n-alkanes (n-C15-C20) with n-C17, the most predominant component, heneicosa-hexaene (n-C21:6), br-C25 alkenes and long-chain n-alkanes (n-C21-C30), without any odd or even carbon number predominance, were found from five depths. The presence of short-chain n-alkanes and n-C21:6 indicated that phytoplankton in the surface waters was a primary source of organic matter in the sinking particles. Two isomers of br-C25:3 and br-C25:4 alkenes found in these particles also indicated that br-C25 alkenes were the important biological marker of fecal pellet of zooplankton. The distribution pattern of the long-chain n-alkanes suggested that the sinking particles may be affected by bacteria to some extent. Fatty acids of the sinking particles were separated into free, triglyceride and wax ester fractions consisting of mono- and poly-unsaturated, and saturated fatty acids, with a range from C14 to C30. Concentrations of mono- and poly-unsaturated fatty acids decreased more rapidly toward the deep than those of saturated fatty acids, which cause low ratios of mono- and poly-unsaturated fatty acids/saturated fatty acids. This indicates that unsaturated fatty acids were more rapidly decayed by marine microbes than saturated fatty acids in the deep water, despite the fact that a significant amount of unsaturated fatty acids still remained in the sinking particles collected from the deep waters. Our results revealed that the salp fecal pellet plays an important role in supplying foods to organisms in intermediate and deep seas.  相似文献   

17.
Phytoplankton assemblages were collected during spring blooms in 1982 in Washington State and in Hawaii. Sinking rate responses of these assemblages were examined under nitrate, phosphate, and silicate depletion. Ambient nutrient concentrations, chlorophyll concentrations, photosynthetic rates, sinking rates, and floristic compositions were determined. Under nutrient-replete conditions, the temperate assemblage, composed primarily of large centric diatoms, had a sinking rate of 0.96 m d-1; sinking rates did not change appreciably over 4 d without nitrate. Without phosphate or silicate, the sinking rates remained constant for 3 d and then increased after biomass indices began to decline. These findings illustrate the potential importance of phosphate or silicate depletion to the sedimentation of spring-bloom diatom populations. The subtropical assemblage, composed primarily of diatoms, coccolithophorids, and dinoflagellates, had an initial sinking rate of 0.22 m d-1 and did not display substantial sinking rate changes in the absence of nitrate, phosphate or silicate. Floristic data consistently showed a proliferation of pennate diatoms, which had lower settling rates than centric diatoms. Growth and sedimentation patterns indicated a competitive advantage for pennate diatom components of subtropical assemblages; this in turn may limit phytoplankton sedimentation losses in such ecosystems.  相似文献   

18.
M. Pagano  R. Gaudy 《Marine Biology》1986,90(4):551-564
The feeding activity of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in 1978–1979 using various foods (natural particles, monospecific algal cultures, and artificial food) under different conditions of temperature and salinity. Experiments with Amphidinium sp. or Tetraselmis maculata as food showed that the ingestion rate increased with food concentration according to an asymptotic or a linear relationship. Although of slightly smaller size, T. maculata was ingested at a higher rate than Amphidinium sp. Large maximum daily rations (up to 150% of body carbon with Amphidinium sp. and up to 250% with T. maculata) were attained. These values, which greatly exceed those generally obtained with marine copepods, could result from adaptation of the feeding processes of this copepod to its very rich trophic environment. A significant correlation was demonstrated between ingestion rate and fecal pellet production using T. maculata as food. Therefore, daily fecal production was used as an index of feeding activity in experiments carried out with natural food, T. maculata cultures and artifical food (Tetramin). Increased temperature generally resulted in an activation of grazing and filtration rates and of fecal production at low temperatures (10° to 15°C), but a strong decrease was observed over 22°C. Differences of 10 S over or under the natural salinity level led to a decrease in fecal production, suggesting unachieved acclimatization to salinity variation due to a too short acclimation period before the experiments. Fecal pellet production was higher during the day than during the night. It depended also on the quality of food used: high values were obtained with T. maculata, Phaeodactylum tricornutum, Rhodomonas sp. and Chlamydomonas sp., low values with Chlorella sp. and Amphidinium sp., and medium values with natural food material. The assimilation rate (A) was calculated by Conover's methods. A significant negative correlation was obtained between A and the ash content of the food. High assimilation rates were attained with chlorophycean algae, while natural particulate food produced variable assimilation rates, depending on the amount of inorganic material present.
Biologie d'un copépode des mares temporaires du littoral méditerranéen français: Eurytemora velox
  相似文献   

19.
Faecal pellet formation within the gut of Stage V and adult females of the copepod Calanus helgolandicus Claus involves (1) cyclical processes of digestion and (2) the contribution of parts of the gut epithelium to the pellets. During an experimental regime in which dim lighting was restricted to day-time and feeding to night-time (17.00 to 09.00 hrs), the copepods responded with cyclical changes in both the quantity of pellets they produced and the fine structure of the contents. During the feeding period, the contents showed changes in the relative amounts of materials originating from disintegrated cells of the digestive epithelium and those derived directly from the ingested food. The vacuolar B-cells of the gut contribute to the content of the pellets and the distal, necrotic N-cells appear to be involved in forming the peritrophic membrane which encloses each pellet. Cells of the gut epithelium which are broken down during feeding are all replaced during the non-feeding period. Other individuals were taken directly from the sea and in these, also, the cells of the gut broke down during feeding and contributed to the faecal pellets. The supply of epithelial cells may limit the duration of the feeding period.  相似文献   

20.
Buoyancy of natural populations of marine phytoplankton   总被引:1,自引:0,他引:1  
Buoyancy of natural populations of marine phytoplankton was studied in a fjord in western Norway during the diatom bloom and in autumn. The study was carried out under approximate in situ conditions by means of an apparatus described in the paper. During the spring bloom, positive buoyancy was observed only once. Sinking rates of individual fractions ranged from 0 to more than 9 m day-1, and the mean sinking rates of the total chlorophyll content from 0 to at least 2. 2 m day-1. The highest rates occurred in the post-bloom period, while sinking appeared negligible from the onset of the bloom up to its culmination. In autumn, the population was dominated by small, flagellated cells. Positive buoyancy, or upward migration, was then observed in two out of three experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号