首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of amendment with municipal solid waste compost (MSWC) and anaerobically digested sewage sludge (SS) on the compositional and structural features of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC, SS, and two different Portuguese soils, a sandy Haplic Podzol and a clay loam Calcic Vertisol, which were either unamended or amended with MSWC or SS at a rate of 60tha(-1). The isolated HAs were analyzed for elemental and acidic functional group composition, and by ultraviolet/visible, Fourier transform infrared (FT IR), and fluorescence spectroscopies. The application of MSWC and especially SS to soils determined an increase of C, N, H, and S contents and E(4)/E(6) ratios (i.e., ratios of absorbances at 465 and 665nm), and a decrease of O, COOH, and phenolic OH contents and C/N, C/H, and O/C ratios of soil HAs. The FT IR and fluorescence results showed that the organic amendments, especially SS, caused an increase of the aliphatic character and a decrease of the degrees of aromatic polycondensation, polymerization, and humification of amended soil HAs. Both MSWC and SS affected more markedly the clayey soil HAs than the sandy soil HAs, possibly due to less extended mineralization processes and the protective action of clay minerals on amended soil HAs.  相似文献   

2.
The aim of this study was to assess whether soil microbial biomass could be used as an indicator of environmental changes following the application of organic residue (compost of municipal solid waste and farmyard manure) or mineral fertilizers (N and P) into cultivated or uncultivated loam-clayey soil, for three consecutive years. The carbon and nitrogen of the microbial biomass (B(C) and B(N) were studied using the fumigation-extraction method. For the two cultivated and uncultivated plots, B(N) and B(C) were more important in the superficial profile (0-20 cm) than in the deep one (20-40 cm). In the uncultivated soil, we observed a good linear relation between B(C) and B(N) at the level of upper soil horizon during the wet season with r coefficients of 0.95, 0.71 and 0.80 for the consecutive years 2000, 2001 and 2002, respectively. Microbial biomasses C and N increased during the rainy season and decreased during the dry season. Microbial biomass C and N showed the higher content with compost and farmyard manure at 40 tonnes ha(-1). Moreover, the results showed that at the beginning of the experiment, the microbial biomass was higher in the ploughed wheat-cultivated plot than in the uncultivated one. Microbial biomass C and N in the cultivated plot amended with compost at 40 tonnes ha(-1) were significantly different in comparison with the soil microbial biomass amended with farmyard manure. The combining of chemical fertilizer with the organic fertilizer, such as compost at 40 or 80 tonnes ha(-1) and farmyard manure, increased the microbial biomasses C and N after 1 and 2 years. In the cultivated or uncultivated plots the results revealed that the best application rate of the compost was 40 tonnes ha(-1) and when the compost rate was increased from 40 to 80 tonnes ha(-1) both B(C) and B(N) decreased significantly.  相似文献   

3.
Sulphur mineralization of cattle manure (CM) and green waste compost (GWC) added to six agricultural soils with different chemical properties was monitored over 10 weeks in a laboratory incubation experiment. Although the amount of sulphur was higher in CM than in GWC, the cumulative SO4(2-)-S values in GWC-treated soils were higher than in soil amended with CM. The percentages of mineralized S were always higher in GWC-treated soil (in the range 1.3-8.5%) than in CM-treated soil (in the range 0.9-3.8%). In three of the six soils, particularly for CM, an immobilization of sulphur was observed. Three kinetic models were evaluated for their suitability to describe the mineralization process. The first-order model best described S mineralization for both amended and control soils. The GWC substantially increased the amount of potentially mineralizable S (S0) relative to the controls. In GWC-treated soils, the rates of S mineralization (k) were higher than rates in the controls. The k of CM-amended soils was often lower than the k of control soils. Parameters derived from the model were tested as indices for assessing the relationships between S mineralization and soil characteristics. The S0 was positively correlated to the amount of cumulative SO4(2-)-S and also to the content of organic C, N and S in soil.  相似文献   

4.
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.  相似文献   

5.
In this work the composting process of municipal solid wastes was studied in order to characterize the transformations of organic matter, particularly humic acid (HA). A composting process, lasting three months, was monitored by chemical methods; the following parameters were measured: water-soluble carbon concentration (WSC) and humic substances content (humic and fulvic acid (FA)). The effects of humification on the molecular structure of humic acid (HA) were also evaluated by Fourier transform infrared (FT-IR) and (13)C NMR spectroscopy. WSC concentration rapidly increased reaching a maximum at day-14 of the composting process and then declined. The humic and fulvic acid content (HA and FA, respectively) slightly increased during the process. The FT-IR and (13)C NMR spectra of HA indicate a high rate of change in structure during composting. The groups containing aromatic and carboxylic C increased, while polysaccharides and other aliphatic structures degraded during composting, resulting in HA structures of higher aromaticity. Therefore, spectrometric measurements could provide information significantly correlated to conventional chemical parameters of compost maturity.  相似文献   

6.
Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical “Picual” olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil.  相似文献   

7.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 23 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA.  相似文献   

8.
Composting is a good method for recycling surplus manure and stabilizing organic matter from biowastes. Compost is used as a soil amendment and recently, for restoration of vegetation in barren areas. We investigated the relationship between the type of woody biomass (using Robinia pseudoacacia, Japanese larch and apple) and the humification index (HI) of the resulting compost. This study evaluated the difference in HI between the three compost types, and the structural features of composts and extracted humic acids (HAs). The HIs for R. pseudoacacia and apple were larger than that for Japanese larch after composting for 11 months. The structural features of the Japanese larch compost were also different from the apple and R. pseudoacacia, with a very high carbon/nitrogen ratio. The average molecular weights and ultraviolet–visible spectra (A600/C) of HAs extracted from composting samples at 0 and 11 months indicate that the humification rate of Japanese larch was slower than that of R. pseudoacacia and apple. During composting, the average molecular weights of apple and R. pseudoacacia decreased, while their A600/C values increased, but the reverse was observed for Japanese larch. The humification rate was found to depend on the type of woody biomass being composted.  相似文献   

9.
The investigation was carried out in a 2 year experiment to evaluate the benefits and hazards of the use of composted sewage sludge as a restoration agent for the soil of the nursery forest intended for growing Pinus sylvestris seedlings. The grey forest soil (Haplic Greyzem) was amended with compost at the 25, 50, 75, 100, 150 and 175 t ha(-1) application rates on a dry matter basis. The organic matter content increased with the increase in sludge amendment as well as the metal content. However, the concentrations of individual metals were below the current limits established for Russia and European countries. Sludge amendments enhanced the germination and decreased the mortality of the seedlings. The effects were more obvious for the soil with the highest sludge treatment. The beneficial effects on the biomass of seedlings and the height of the shoots as well as on the length of the roots of the pine seedlings were greater in plots with the highest rates of composted sludge. The application of composted sludge to soil was followed by an increase in microbial biomass and to a lesser extent in basal respiration. In the absence of any detrimental effect on microorganisms, this study lends support to using composted sewage sludge as the organo-mineral fertilizer for the soil of nursery forest.  相似文献   

10.
A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.  相似文献   

11.
Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10% (g/g) compost containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2–4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.  相似文献   

12.
Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was measured after incubation in the free FA fraction and a -2.58 Deltadelta15N in the bound FA. These changes, which occurred during soil incubation in the absence of C inputs, indicate that free FA fractions were utilised by soil microorganisms, and bound FA were decomposed and replaced, in part, by newly synthesized FA. The 13CPMAS-TOSS NMR spectra of free HA extracted before and after 215 days of incubation were mostly unchanged. In contrast, changes were evident in bound HA and showed an increase in aromatic C after incubation.  相似文献   

13.
The progressive transformations of lipid and humus-like fractions in soil after massive input (400 Mg ha(-1)) of urban waste have been studied during an 87-week experiment in field plots of a degraded Calcic Regosol in Central Spain. Structural changes in the macromolecular fractions were small when compared with the qualitative and quantitative changes in lipid composition. The intense depletion of the lipid fraction with time and the decrease of the humic acid to fulvic acid ratio were the most significant quantitative indices of the compost transformation in soil. Changes in soil lipid fractions were especially noted in relation to their speciation status and distribution patterns (carbon preference index and relative chain length). Three subfractions were considered: (I) direct extraction with petroleum ether, (II) liquid-liquid extraction after soil treatment with 2 M H3PO4 and (III) after soil treatment with 0.1 M NaOH. Although lipid concentration tends to decrease with time, lipids in the fraction tightly bonded to soil (III) remained qualitatively and quantitatively constant in the course of the field experiment. Gas chromatographic-mass spectrometric analyses showed that the more stable the association of lipid to the soil matrix, the fewer the changes observed in the distribution pattern of the fatty acids during the progressive transformation stages.  相似文献   

14.
Dissolved organic matter (DOM) from wastewater rejected by nanofiltration from a landfill leachate treatment plant was fractionated into humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions. It was found that humic substances (HA and FA) composed 75% of the total dissolved organic carbon (DOC) concentration of the DOM, with an average molecular weight of about 1000 Da. Elemental analysis, infrared spectroscopy, UV-visible spectroscopy and acid-base titration observations showed that the HA and FA of the DOM exhibited lower fractions of condensed aromatic functional groups but larger fractions of acidic groups compared with other aquatic DOMs. The properties of HA and FA were similar, but HA exhibited more complete humification, while the HyI fraction had more acidic groups. An aminated polymeric adsorbent NDA-8 was used to adsorb the DOM in the wastewater along with primary coagulation. Results of bench-scale experiments indicated that the treatment process could effectively remove the DOM and heavy metals while desorption liquid was 10 times more condensed than raw wastewater. Results of desorption and reproducibility tests consolidated the strong application potential of this treatment process as an advanced landfill leachate treatment technology.  相似文献   

15.
We investigated the effect of a single compost application at two rates (50 and 85Mgha(-1)) on carbon (C) degradation and retention in an agricultural soil cropped with maize after 150d. We used both C mass balance and soil respiration data to trace the fate of compost C. Our results indicated that compost C accumulated in the soil after 150d was 4.24Mgha(-1) and 6.82Mg C ha(-1) for 50 and 85Mg ha(-1) compost rate, respectively. Compost C was sequestered at the rate of 623 and 617g C kg(-1) compost TOC for 50 and 85Mgha(-1) compost dose, respectively. These results point to a linear response between dose of application and both C degradation and retention. The amount of C sequestered was similar to the total recalcitrant C content of compost, which was 586g C kg(-1) compost TOC, indicating that, probably, during the short experiment, the labile C pool of compost (414g C kg(-1) of compost TOC) was completely degraded. Soil respiration measured at different times during the crop growth cycle was stable for soils amended with compost (CO2 flux of 0.96+/-0.11g CO2 m(-2) h(-1) and 1.07+/-0.10g CO2 m(-2) h(-1), respectively, for 50 and 85Mgha(-1)), whereas it increased in the control. The CO2 flux due to compost degradation only, though not statistically significant, was always greatest for the highest compost doses applied (0.22+/-0.40g CO2 m(-2) h(-1) and 0.33+/-0.25g CO2 m(-2) h(-1) for the 50 and 85Mgha(-1) compost dose, respectively). This seems to confirm the highest C degradation for the 85Mgha(-1) compost dose as a consequence of the presence of more labile C. Unlike other studies, the results show a slight increase in the fraction of carbon retained with the increase in compost application rate. This could be due to the highly stable state of the compost prior to application, although it could also be due to sampling uncertainty. Further investigations are needed to better explain how the compost application rate affects carbon sequestration, and how characterization into labile and recalcitrant C can predict the amount of C sequestered in the soil.  相似文献   

16.
Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and 35-50 cm) was determined. The nitrate concentration in drainage water confirmed the results obtained in the incubation experiment: nitrate leaching was higher in soil treated with MWC due to its higher N-mineralization rate. Nevertheless, the nitrate losses represented a low amount compared with the total nitrogen added to soil. No clear signs of water-draining contamination were observed during the first year after the application of AC and PS; however, the nitrate leaching in soil treated with MWC slightly exceeded the limit allowed for the Drinking Water Directive 98/83/CE.  相似文献   

17.
In this study, the main characteristics and soil amendment effects on the saline–alkali soil of humic acid extracted from solubilized excess sludge (SS-HA) were investigated. The excess sludge was solubilized prior to extraction to improve the humic acid recovery rate. The structural features of SS-HA were characterized by an elemental analysis, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy, and compared with those of HA extracted from non-solubilized excess sludge (ES-HA). The results showed that extraction efficiency of humic acid was enhanced by using solubilization, although structural properties of humic acid extracted from solubilized excess sludge were almost the same as those of ES-HA. To study a utilization method of SS-HA, the soil amendment effects on saline–alkali soil by mixture of SS-HA were investigated with a model soil-column experiment. SS-HA reduced the pH of the saline–alkali soil, and the effect was immediately observed or faster than the case in which only peat is added. Moreover, the cation exchangeable capacity of the saline–alkali soil was enhanced by addition of SS-HA.  相似文献   

18.
An alternative approach for cattle manure management on intensive livestock farms is the composting process. An industrial-scale composting plant has been set up in northwest Spain for producing compost from cattle manure. Manure composting involved an increase in pH, electrical conductivity (EC), cation exchange capacity (CEC) and NO3(-)--N concentration, and a decrease in temperature, moisture content, organic matter (OM) content, NH4+--N concentration and C/N ratio. Cu, Zn and Ni concentrations increased due to the reduction of pile mass during the composting process. The resulting compost was applied to a field to study the viability of applying this compost combined with a nitrogen mineral fertilizer as a replacement for the mineral fertilization conventionally used for maize (Zea mays L.). The thermophilic phase of the composting process was very prolonged in the time, which may have slowed down the decomposition of the organic matter and reduced the nitrification process, leading to an over-short maturation phase. The humification and respirometric indexes, however, determined immediately after compost application to the soil, showed it to be stable. Compost application did not decrease the grain yield. A year later, soil pH, OM content and CEC were higher with the compost treatment. Total P, K, Ca and Na concentrations in compost-amended plots were higher than in mineral-fertilized ones, and no significant differences between treatments were found in soil concentrations of NH4+--N,NO3- --N, available P, Mg and B. Compost caused no heavy metal pollution into the soil. Therefore, this compost would be a good substitute for the mineral fertilizers generally used for basal dressing in maize growing.  相似文献   

19.
A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to 4-22xcmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4gL(-1) yields good colour intensity and equal colour uniformity as SDS at 5gL(-1), in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants.  相似文献   

20.
Microbial biomass in a soil amended with different types of organic wastes.   总被引:1,自引:0,他引:1  
Application of different types of organic wastes may have a marked effect on soil microbial biomass and its activity. The objective of this study was to quantify the amount of microbial biomass in a loamy-clayey soil, amended with different types of organic waste residues (composts of municipal solid waste of different ages, sewage sludge and farmyard manure) and incubated for 8 weeks at 25 degrees C and two-thirds of field capacity, using the fumigation-extraction method. Both microbial biomass-C and -N (BC and BN, respectively) appeared to be dependent on the type of organic waste residues, on their degree of stability, and on their chemical characteristics. In general, organic wastes increased the microbial biomass-C content in the soil and the microbial BC was positively correlated with the organic C content, the C/N, neutral detergent fibre/N (NDF/N) and acid detergent fibre/N (ADF/ N) ratios. The microbial biomass content decreased according to the period of incubation, especially when the compost used was immature. The microbial biomass-N was positively correlated with the total N and percentage of hemicellulose. The microbial biomass-C was linearly related with the microbial biomass-N and the ratio BC/BN was exponentially related with the BC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号