首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Southern Alberta, which has a cold climate dominated by strong chinook winds, has the highest density of feedlot cattle in Canada. However, the quantity and quality of runoff from beef cattle (Bos taurus) feedlots in this unique region has not been investigated. Our objectives were to compare runoff quantity (1998-2002) with catch-basin design criteria; determine concentrations of selected inorganic chemical parameters (1998-2000) in runoff in relation to water quality guidelines and the potential implications of irrigating adjacent crop-land; and determine if total heterotrophs, total coliforms, and Escherichia coli (1998-2000) persisted in the catch-basin water and soil. Runoff (< 0.1 to 42.5 mm) for a 24-h duration that included maximum peak discharge was less than the recommended design criteria of 90 mm based on runoff from 24 h of rainfall with a 30-yr return period. We found that curve numbers between 52 and 96 (mode of 90) were required to match the USDA Natural Resources Conservation Service predicted runoff and actual runoff volumes. Total P posed the greatest threat to water quality guidelines, and K posed the greatest threat for exceeding crop fertilizer requirements if catch-basin effluent was used as irrigation water. Water in the catch basin had continually high populations of E. coli throughout the study, with values ranging between log10 2 and log10 8 100 mL(-1). In contrast, soil in the catch basin generally had low populations of E. coli that were < log10 2 g(-1) wet wt., but at times higher populations between log10 2 and log10 6 g(-1) wet wt. were also found.  相似文献   

2.
Nutrients, soluble salts, and pathogenic bacteria in feedlot-pen manure have the potential to cause pollution of the environment. A three-year study (1998-2000) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and season on the chemical and bacterial properties of pen-floor manure. Manure was sampled for chemical content (N, P, soluble salts, electrical conductivity, and pH) and populations of four groups of bacteria (Escherichia coli, total coliforms, and total aerobic heterotrophs at 27 and 39 degrees C). More chemical parameters of manure were significantly (P < or = 0.05) affected by season (SO4, Na, Mg, K, Ca, sodium adsorption ratio [SAR], total C, NO3-N, NH4-N, total P, and available P) than by bedding (K, pH, total C, C to N ratio, NH4-N, and available P). Bedding had no significant (P > 0.05) effect on the four bacterial groups whereas season affected all four groups. Numbers of E. coli and total coliforms (TC) were significantly higher by 1.72 to 2.02 log10 units in the summer than the other three seasons, which was consistent with a strong positive correlation of E. coli and TC with air temperature. The low ratio of bedding to manure in the pens was probably the major cause of the lack of significant bedding effects. Bedding material and seasonal timing of cleaning feedlot pens and land application of manure may be a potential tool to manage nutrients, soluble salts, and pathogens in manure.  相似文献   

3.
In the 1990s, restrictions on incineration encouraged the forest industry in western Canada to develop new uses for their wood residuals by product. One such use was as a replacement for cereal straw bedding in southern Alberta's beef cattle (Bos taurus) feedlot industry. However, use of carbon (C)-rich bedding, such as wood chips, had implications for subsequent composting of the feedlot manure, a practice that was being increasingly adopted. In a 3-yr study, we compared composting of wood chip-bedded manure (WBM) and barley (Hordeum vulgare L.) straw-bedded manure (SBM). There were no significant differences in temperature regimes of SBM and WBM, indicating similar rates of successful composting. Of 17 physical and chemical parameters, five showed significant (P < 0.10) differences due to bedding at the outset of composting (Day 0), and 11 showed significant differences at final sampling (Day 124). During composting (10 sampling times), seven parameters showed significant bedding effects, 16 showed significant time effects, and four showed a Bedding x Time interaction. Significantly lower (P < 0.10) losses of nitrogen (N) occurred with WBM (19%) compared with SBM (34%), which has positive implications for air quality and use as a soil amendment. Other advantages of WBM compost included significantly higher total C (333 vs. 210 kg Mg(-1) for SBM) and inorganic N (1.3 vs. 1.0 kg Mg(-1) for SBM) and significantly lower total phosphorus (4.5 vs. 5.3 kg Mg(-1) for SBM). Our results showed that wood chip bedding should not be a problem for subsequent composting of the manure after pen cleaning. In combination with other benefits, our findings should encourage the adoption of wood chips over straw as a bedding choice for southern Alberta feedlots.  相似文献   

4.
Soluble salts, nutrients, and pathogenic bacteria in feedlot-pen runoff have the potential to cause pollution of the environment. A 2-yr study (1998-1999) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada, to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and within-pen location on the chemical and bacterial properties of pen-floor runoff. Runoff was generated with a portable rainfall simulator and analyzed for chemical content (nitrogen [N], phosphorus [P], soluble salts, electrical conductivity [EC], sodium adsorption ratio [SAR], dissolved oxygen [DO], and pH) and populations of three groups of bacteria (Escherichia coli, total coliforms, total aerobic heterotrophs at 27 degrees C) in 1998 and 1999. Bedding had a significant (P < or = 0.05) effect on NH4-N concentration and load in 1999, SO4 load in 1998, SO4 concentration and load in 1999, and total coliforms in both years; where these three variables were higher in wood than straw pens. Location had a significant effect on EC and concentrations of total Kjeldahl nitrogen (TKN), Na, K, SO4, and Cl in 1998, and total coliforms in both years. These seven variables were higher at the bedding pack than pen floor location, indicating that bedding packs were major reservoirs of TKN, soluble salts, and total coliforms. Significantly higher dissolved reactive phosphorus (DRP), total P, and NH4-N concentrations and loads at the bedding pack location in wood pens in 1998, and a similar trend for TKN concentration in 1999, indicated that this bedding-location treatment was a greater source of nutrients to runoff than the other three bedding-location treatments. Bedding, location, and their interaction may therefore be a potential tool to manage nutrients, soluble salts, and bacteria in feedlot runoff.  相似文献   

5.
Manure applied to agricultural land at rates that exceed annual crop nutrient requirements can be a source of phosphorus in runoff. Manure incorporation is often recommended to reduce phosphorus losses in runoff. A small plot rainfall simulation study was conducted at three sites in Alberta to evaluate the effects of manure rate and incorporation on phosphorus losses. Treatments consisted of three solid beef cattle manure application rates (50, 100, and 200 kg ha(-1) total phosphorus), an unmanured control, and two incorporation methods (nonincorporated and incorporated with one pass of a double disk). Simulated rain was applied to soils with freshly applied and residual (1 yr after application) manure at 70 mm h(-1) to produce 30 min of runoff. Soil test phosphorus (STP), total phosphorus (TP), and dissolved reactive phosphorus (DRP) concentrations in runoff increased with manure rate for fresh and residual manure. Initial abstraction and runoff volumes did not change with manure rate. Initial abstraction, runoff volumes, and phosphorus concentrations did not change with manure incorporation at Lacombe and Wilson, but initial abstraction volumes increased and runoff volumes and phosphorus concentrations decreased with incorporation of fresh manure at Beaverlodge. Phosphorus losses in runoff were directly related to phosphorus additions. Extraction coefficients (slopes of the regression lines) for the linear relationships between residual manure STP and phosphorus in runoff were 0.007 to 0.015 for runoff TP and 0.006 to 0.013 for runoff DRP. While incorporation of manure with a double disk had no significant effect on phosphorus losses in runoff from manure-amended soils 1 yr after application, incorporation of manure is still recommended to control nitrogen losses, improve crop nutrient uptake, and potentially reduce odor concerns.  相似文献   

6.
Few studies have documented spatial and temporal variations in ground water quality in areas with high densities of animal farming operations (AFOs), or the long-term effects on surface-water quality. Changes in ground water quality were characterized in an irrigated area with a high density of AFOs in southern Alberta, Canada to evaluate the effect on ground water quality of manure application to fields. Fifty-five piezometers in the oxidized zone were sampled once or twice annually from 1995 to 2001, and temporal changes were analyzed using mixed model analysis. Average NO3- -N increased significantly from 12.5 to 17.4 mg L(-1) and average Cl- increased significantly from 19.4 to 34.4 mg L(-1) in piezometers installed in an unconfined sand aquifer at locations receiving fertilizer and manure. Compared with these manured locations, nitrate and chloride concentrations were significantly lower in shallow aquifer water in areas of pasture or native range, and concentrations did not change significantly with time. Nitrate and chloride concentrations in shallow ground water in fine-textured manured locations did not change significantly. Ground water below about 6 m in till and fine lacustrine sediments contains 18O signatures indicative of recharge under preirrigation or glacially influenced conditions, suggesting this ground water has a low vulnerability to agricultural contamination. Evaluations suggest that shallow ground water discharge will cause NO3- -N and Cl- in the Oldman River to increase by factors of at least 4.3 and 1.3, respectively, with more significant effects in smaller streams and under low-flow conditions.  相似文献   

7.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

8.
Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta.  相似文献   

9.
Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure.  相似文献   

10.
The purpose of this research is to create a baseline model of soil compaction response to trampling and a methodology to model the effects of trampling on soil. Although trampling studies have been conducted in the past, the analysis of military training in part provides a different perspective and approach. The data showed bulk densities remained relatively constant for a time and then began to increase at an increasing rate for several hundred passes and finally leveled and remained at or below 1.30 g/cm3 through the remainder of the experiment. Mathematical models were created based on empirical data from a trampling experiment using a more standard logistical growth curve as well as curves based on Weibull and gamma cumulative distribution functions (CDFs). The experiment and the resulting models give quantifiable continuous inference on the effects of trampling, as opposed to the existing qualitative assessments. These baseline models will be the foundation for future studies of land management when trampling occurs.  相似文献   

11.
The area under no-till (NT) in Brazil reached 22 million ha in 2004-2005, of which approximately 45% was located in the southern states. From the 1970s to the mid-1980s, this region was a source of carbon dioxide to the atmosphere due to decrease of soil carbon (C) stocks and high consumption of fuel by intensive tillage. Since then, NT has partially restored the soil C lost and reduced the consumption of fossil fuels. To assess the potential of C accumulation in NT soils, four long-term experiments (7-19 yr) in subtropical soils (Paleudult, Paleudalf, and Hapludox) varying in soil texture (87-760 g kg(-1) of clay) in agroecologic southern Brazil zones (central region, northwest basaltic plateau in Rio Grande Sul, and west basaltic plateau in Santa Catarina) and with different cropping systems (soybean and maize) were investigated. The lability of soil organic matter (SOM) was calculated as the ratio of total organic carbon (TOC) to particulate organic carbon (POC), and the role of physical protection on stability of SOM was evaluated. In general, TOC and POC stocks in native grass correlated closely with clay content. Conversely, there was no clear effect of soil texture on C accumulation rates in NT soils, which ranged from 0.12 to 0.59 Mg ha(-1) yr(-1). The C accumulation was higher in NT than in conventional-till (CT) soils. The legume cover crops pigeon pea [Cajanus cajan (L.) Millsp] and velvet beans (Stizolobium cinereum Piper & Tracy) in NT maize cropping systems had the highest C accumulation rates (0.38-0.59 Mg ha(-1) yr(-1)). The intensive cropping systems also were effective in increasing the C accumulation rates in NT soils (0.25-0.34 Mg ha(-1) yr(-1)) when compared to the double-crop system used by farmers. These results stress the role of N fixation in improving the tropical and subtropical cropping systems. The physical protection of SOM within soil aggregates was an important mechanism of C accumulation in the sandy clay loam Paleudult under NT. The cropping system and NT effects on C stocks were attributed to an increase in the lability of SOM, as evidenced by the higher POC to TOC ratio, which is very important to C and energy flux through the soil.  相似文献   

12.
Information on ecotoxicity of organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in terrestrial environment is needed for establishing soil quality criteria and for risk assessment purposes. An ecotoxic effect of a model PAH compound (phenanthrene) toward soils microorganisms (nitrifying bacteria) was evaluated in 50 different soils. The soil samples were collected from agricultural land in four regions of Poland with varying levels of industrialization (Slaskie, Dolnoslaskie, Podlaskie, and Lubelskie voievodeships). Soils were characterized for basic physicochemical properties (texture, organic matter content, pH(KCl), total nitrogen content, total sorption capacity) and the content of contaminants including PAHs (73-800 microg kg(-1)), Pb (6-720 mg kg(-1)), and Zn (9-667 mg kg(-1)). Ecotoxicity of phenanthrene (applied at 10, 100, 500, and 1000 mg kg(-1)) to soils microorganisms was evaluated in laboratory studies in control conditions (incubation of soils for 7 d at 20 +/- 2 degrees C). Nitrification potential was used as the ecotoxicity measurements end point. The EC50 values (146-1670 mg kg(-1)) calculated from the square root-X linear regression model differed significantly in various soils, although it was difficult to establish a causative relationship between soil physicochemical characteristic and phenanthrene toxicity. A significant factor in the assessment of soils vulnerability to the effect of phenanthrene was level of soil contamination, particularly with PAHs. Soils with previous contamination were more susceptible (mean EC50, 325 mg kg(-1)) than soils from uncontaminated, rural areas (mean EC50, 603 mg kg(-1)).  相似文献   

13.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

14.
Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations.  相似文献   

15.
Knowledge of phosphorus (P) species in P-rich soils is useful for assessing P mobility and potential transfer to ground water and surface waters. Soil P was studied using synchrotron X-ray absorption near-edge structure (XANES) spectroscopy (a nondestructive chemical-speciation technique) and sequential chemical fractionation. The objective was to determine the chemical speciation of P in long-term-fertilized, P-rich soils differing in pH, clay, and organic matter contents. Samples of three slightly acidic (pH 5.5-6.2) and two slightly alkaline (pH 7.4-7.6) soils were collected from A or B horizons in two distinct agrosystems in the province of Québec, Canada. The soils contained between 800 and 2100 mg total P kg(-1). Distinct XANES features for Ca-phosphate mineral standards and for standards of adsorbed phosphate made it possible to differentiate these forms of P in the soil samples. The XANES results indicated that phosphate adsorbed on Fe- or Al-oxide minerals was present in all soils, with a higher proportion in acidic than in slightly alkaline samples. Calcium phosphate also occurred in all soils, regardless of pH. In agreement with chemical fractionation results, XANES data showed that Ca-phosphates were the dominant P forms in one acidic (pH 5.5) and in the two slightly alkaline (pH 7.4-7.6) soil samples. X-ray absorption near-edge structure spectroscopy directly identified certain forms of soil P, while chemical fractionation provided indirect supporting data and gave insights on additional forms of P such as organic pools that were not accounted for by the XANES analyses.  相似文献   

16.
本文研究了四川盆地几种典型退化紫色土的基本物理特性及对其蚀、旱等肥力退化(?)征的影响。研究指出,退化紫色土的粗骨颗粒(>10μm)占52.00%~69.97%;粗微结构体(>10μm占72.29%~82.54%,而结构系数却较低;粗孔隙(>10μm)占32.21%~38.15%;在各吸力下土壤持水量均较低;土壤蒸发达到平衡时的历时较短等特性部是影响紫色土易蚀、易旱的重要原因采用侵蚀度、水容量和失水比评价其易蚀、易旱性看出:各类典型紫色土退化较重,沙溪庙组饱和(?)紫色土则退化较轻。  相似文献   

17.
The organic fraction of a municipal solid waste was added in different doses to an eroded soil formed of loam and with no vegetal cover. After three years, the changes in macronutrient content and the chemical-structural composition of its organic matter were studied. The addition of the organic fraction from a municipal solid waste had a positive effect on soil regeneration, the treated soils being covered with spontaneous vegetation from 1 yr onwards. An increase in electrical conductivity and a fall in pH were noted in the treated soils as were increases in macronutrients, particularly N and available P and the different carbon fractions. Optical density measurements of the organic matter extracted with sodium pyrophosphate showed that the treated soils contained an organic matter with less condensed compounds and with a greater tendency to evolve than the control. A pyrolysis-gas chromatography study of the organic matter extracted with pyrophosphate showed large quantities of benzene both in the treated soils and control; pyrrole was also relatively abundant, although this fragment decreased as the dose rose. Xylenes and pyridine were present in greater quantities in the control and furfural in the treated soils. Three years after addition to the soil, the organic matter had a higher proportion of fragments derived from aromatic compounds and a smaller proportion derived from hydrocarbons. Similarity indices showed that, although the added and newly formed organic matter 3 yr after addition continued to differ from that of the original soil and to be more mineralizable, the transformations it has undergone made it more similar to the original organic matter of the soil than it was at the moment of being added.  相似文献   

18.
Composting of manure may lead to the degradation of veterinary antimicrobials, but it is largely unknown if the presence of antimicrobials affects the composting process. Open-air windrow composting of manure from beef cattle (Bos taurus) administered chlortetracycline, sulfamethazine, and tylosin was investigated in a 2-yr study. At windrow construction, chlortetracycline had extensively isomerized to iso-chlortetracycline. Sulfamethazine, tylosin, and iso-chlortetracycline dissipated by first-order kinetics, whereas the dissipation of enol/keto-chlortetracycline was better described by exponential equations. At the end of the composting period, proportions of antimicrobials remaining were as follows: iso-chlortetracycline (< 1%), chlortetracycline (1 to 4.5%), tylosin (6.3%), and sulfamethazine (6.8% [2005], 41% [2006]). Times for 50% dissipation (DT50) decreased in the order: tylosin (20.3 to 43.5 d) > iso-chlortetracycline (13.5 to 26.5 d) > enol/keto-chlortetracycline (5.5 to 9.8 d). The DT50 values for sulfamethazine varied from 26.8 d in 2005 to 237 d in 2006. Treatments with chlortetracycline showed significantly reduced temperature rises (10.1 to 11.0 degrees C) between Days 21 to 28 in 2006 compared with rises of 26.6 to 31.0 degrees C for control and tylosin treatments, suggesting an inhibition of microbial activity. During composting in 2005, manure from cattle administered chlortetracycline at 44 mg kg(-1) of feed lost significantly less dry matter, carbon, and nitrogen than manure from cattle fed 11 mg chlortetracycline kg(-1) of feed, implying that the higher level of chlortetracycline inhibited microbial decomposition of organic matter. The study shows that while composting leads to dissipation of antimicrobials, the microbially driven composting process may be inhibited by their presence.  相似文献   

19.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

20.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号