首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grass vegetation has been recommended for use in the prevention and control of soil erosion because of its dense sward characteristics and stabilizing effect on the soil. A general assumption is that grassland environments suffer from minimal soil erosion and therefore present little threat to the water quality of surface waters in terms of sediment and sorbed contaminant pollution. Our data question this assumption, reporting results from one hydrological year of observations on a field-experiment monitoring overland flow, drain flow, fluxes of suspended solids, total phosphorus (TP), and molybdate-reactive phosphorus (<0.45 mum) in response to natural rainfall events. During individual rainfall events, 1-ha grassland lysimeters yield up to 15 kg of suspended solids, with concentrations in runoff waters of up to 400 mg L(-1). These concentrations exceed the water quality standards recommended by the European Freshwater Fisheries Directive (25 mg L(-1)) and the USEPA (80 mg L(-1)) and are beyond those reported to have caused chronic effects on freshwater aquatic organisms. Furthermore, TP concentrations in runoff waters from these field lysimeters exceeded 800 mug L(-1). These concentrations are in excess of those reported to cause eutrophication problems in rivers and lakes and contravene the ecoregional nutrient criteria in all of the USA ecoregions. This paper also examines how subsurface drainage, a common agricultural practice in intensively managed grasslands, influences the hydrology and export of sediment and nutrients from grasslands. This dataset suggests that we need to rethink the conceptual understanding of grasslands as non-erosive landscapes. Failure to acknowledge this will result in the noncompliance of surface waters to water quality standards.  相似文献   

2.
The aim of this study was to determine the load of Escherichia coli transferred via drainage waters from drained and undrained pasture following a grazing period. Higher concentrations (ranging between 10(4) and 10(3) colony forming units [CFU] g(-1)) of E. coli persisted in soil for up to 60 d beyond the point where cattle were removed from the plots, but these eventually declined in the early months of spring to concentrations less than 10(2) CFU g(-1). The decline reflects the combined effect of cell depletion from the soil store through both wash-out and die-off of E. coli. No difference (P > 0.05) was observed in E. coli loads exported from drained and undrained plots. Similarly, no difference (P > 0.05) was observed in E. coli concentrations in drainage waters of mole drain flow and overland plus subsurface interflow. Intermittent periods of elevated discharge associated with storm events mobilized E. coli at higher concentrations (e.g., in excess of 400 CFU mL(-1)) than observed during low flow conditions (often <25 CFU mL(-1)). The combination of high discharge and cell concentrations resulted in the export of E. coli loads from drained and undrained plots exceeding 10(6) CFU L(-1) s(-1). The results highlight the potential for drained land to export E. coli loads comparable with those transferred from undrained pasture.  相似文献   

3.
Water resources protection from nitrate nitrogen (NO3-N) contamination is an important public concern and a major national environmental issue. The abilities of the SOIL-SOILN model to simulate water drainage and nitrate N fluxes from orchardgrass (Dactylis glomerata L.) were evaluated using data from a 3-yr field experiment. The soil is classified as a Hagerstown silt loam soil (fine, mixed, semiactive, mesic Typic Hapludalf). Nitrate losses below the 1-m depth from N-fertilized grazed orchardgrass were measured with intact soil core lysimeters. Five N-fertilizer treatments consisted of a control, urine application in the spring, urine application in the summer, urine application in the fall, and feces application in the summer. The SOIL-SOILN models were evaluated using water drainage and nitrate flux data for 1993-1994, 1994-1995, and 1995-1996. The N rate constants from a similar experiment with inorganic fertilizer and manure treatments under corn (Zea mays L.) were used to evaluate the SOILN model under orchardgrass sod. Results indicated that the SOIL model accurately simulated water drainage for all three years. The SOILN model adequately predicted nitrate losses for three urine treatments in each year and a control treatment in 1994-1995. However, it failed to produce accurate simulations for two control treatments in 1993-1994 and 1995-1996, and feces treatments in all three years. The inaccuracy in the simulation results for the control and feces treatments seems to be related to an inadequate modeling of N transformation processes. In general, the results demonstrate the potential of the SOILN model to predict NO3-N fluxes under pasture conditions using N transformation rate constants determined through the calibration process from corn fields on similar soils.  相似文献   

4.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

5.
On military training ranges, low-order, incomplete detonations deposit RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) into surface soils. In this study, we evaluated RDX biodegradation in surface soils obtained from a military training range in Alaska. Two factors were compared: (i) soil water potential during the incubations; and (ii) the use of acetonitrile (ACN) as an RDX carrier to spike samples. Organic solvents have been used in laboratory studies to dissolve slightly water-soluble contaminants before addition to soil. We added ACN to obtain final soil ACN concentrations of 0 mg kg(-1) (0%), 1000 mg kg(-1) (0.1%) and 10 000 mg kg(-1) (1%). We then compared RDX attenuation in the soil under saturated and unsaturated conditions. RDX fell below the limit of detection within 3 wk of study initiation under the saturated condition. A maximum degradation rate of 0.15 mg RDX L(-1) d(-1) was measured. Under the unsaturated condition, 42% of the original RDX was still present at study termination (5 wk). The addition of acetonitrile at 0.1 or 1.0% had no affect on RDX loss in the saturated soil. In the unsaturated soil, however, ACN at 1.0% inhibited RDX loss by as much as 25%. These findings indicate that soil water potential and carrier solvent concentrations can impact the rate and extent to which RDX is attenuated in a surface soil.  相似文献   

6.
Drying of soil may increase the hydrophobicity of soil and affect the mobilization of colloids after re-wetting. Results of previous research suggest that colloid hydrophobicity is an important parameter in controlling the retention of colloids and colloid-associated substances in soils. We tested the hypothesis that air-drying of soil samples increases the hydrophobicity of water-dispersible colloids and whether air-drying affects the mobilization of colloid-associated heavy metals. We performed batch experiments with field-moist and air-dried (25 degrees C) soils from a former sewage farm (sandy loam), a municipal park (loamy sand), and a shooting range site (loamy sand with 25% C(org)). The filtered suspensions (<1.2 microm) were analyzed for concentrations of dissolved and colloidal organic C and heavy metals (Cu, Cd, Pb, Zn), average colloid size, zeta potential, and turbidity. The hydrophobicity of colloids was determined by their partitioning between a hydrophobic solid and a hydrophilic aqueous phase. Drying increased hydrophobicity of the solid phase but did not affect the hydrophobicity of the dispersed colloids. Drying decreased the amount of mobilized mineral and (organo-)mineral colloids in the sewage farm soils but increased the mobilization of organic colloids in the C-rich shooting range soil. Dried samples released less colloid-bound Cd and Zn than field-moist samples. Drying-induced mobilization of dissolved organic C caused a redistribution of Cu from the colloidal to the dissolved phase. We conclude that drying-induced colloid mobilization is not caused by a change in the physicochemical properties of the colloids. Therefore, it is likely that the mobilization of colloids in the field is caused by increasing shear forces or the disintegration of aggregates.  相似文献   

7.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

8.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   

9.
Subsurface soil water dynamics can influence crop growth and the fate of surface-applied fertilizers and pesticides. Recently, a method was proposed using only ground-penetrating radar (GPR) and digital elevation maps (DEMs) to identify locations where subsurface water converged into discrete pathways. For this study, the GPR protocol for identifying horizontal subsurface flow pathways was extended to a 3.2-ha field, uncertainty is discussed, and soil moisture and yield patterns are presented as confirming evidence of the extent of the subsurface flow pathways. Observed soil water contents supported the existence of discrete preferential funnel flow processes occurring near the GPR-identified preferential flow pathways. Soil moisture also played a critical role in the formation of corn (Zea mays L.) grain yield patterns with yield spatial patterns being similar for mild and severe drought conditions. A buffer zone protocol was introduced that allowed the impact of subsurface flow pathways on corn grain yield to be quantified. Results indicate that when a GPR-identified subsurface clay layer was within 2 m of the soil surface, there was a beneficial impact on yield during a drought year. Furthermore, the buffer zone analysis demonstrated that corn grain yields decreased as the horizontal distance from the GPR-identified subsurface flow pathways increased during a drought year. Averaged real-time soil moisture contents at 0.1 m also decreased with increasing distance from the GPR-identified flow pathways. This research suggests that subsurface flow pathways exist and influence soil moisture and corn grain yield patterns.  相似文献   

10.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

11.
Nitrate in water removed from fields by subsurface drain ('tile') systems is often at concentrations exceeding the 10 mg N L(-1) maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO(3) concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO(3) losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.2 m below the soil surface to losses in tile drainage from two alternative drainage designs. The alternative treatments were a deep tile (DT), where the tile drain was installed 0.6 m deeper than the conventional tile depth, but with the outlet maintained at 1.2 m, and a denitrification wall (DW), where trenches excavated parallel to the tile and filled with woodchips serve as additional carbon sources to increase denitrification. Four replicate 30.5- by 42.7-m field plots were installed for each treatment in 1999 and a corn-soybean rotation initiated in 2000. Over 5 yr (2001-2005) the tile flow from the DW treatment had annual average NO(3) concentrations significantly lower than the CN treatment (8.8 vs. 22.1 mg N L(-1)). This represented an annual reduction in NO(3) mass loss of 29 kg N ha(-1) or a 55% reduction in nitrate mass lost in tile drainage for the DW treatment. The DT treatment did not consistently lower NO(3) concentrations, nor reduce the annual NO(3) mass loss in drainage. The DT treatment did exhibit lower NO(3) concentrations in tile drainage than the CN treatment during late summer when tile flow rates were minimal. There was no difference in crop yields for any of the treatments. Thus, denitrification walls are able to substantially reduce NO(3) concentrations in tile drainage for at least 5 yr.  相似文献   

12.
Soil chemical constituents influence soil structure and erosion potential. We investigated manure and inorganic fertilizer applications on soil chemistry (carbon [C] quality and exchangeable cations), aggregation, and phosphorus (P) loss in overland flow. Surface samples (0-5 cm) of a Hagerstown (fine, mixed, semiactive, mesic Typic Hapludalf) soil, to which either dairy or poultry manure or triple superphosphate had been applied (0-200 kg P ha(-1) yr(-1) for 5 yr), were packed in boxes (1 m long, 0.15 m wide, and 0.10 m deep) to field bulk density (1.2 g cm(-3)). Rainfall was applied (65 mm h(-1)), overland flow collected, and sediment and P loss determined. All amendments increased Mehlich 3-extractable P (19-177 mg kg(-1)) and exchangeable Ca (4.2-11.5 cmol kg(-1)) compared with untreated soil. For all treatments, sediment transport was inversely related to the degree of soil aggregation (determined as ratio of dispersed and undispersed clay; r = 0.51), exchangeable Ca (r = 0.59), and hydrolyzable carbohydrate (r = 0.62). The loss of particulate P and total P in overland flow from soil treated with up to 50 kg P ha(-1) dairy manure (9.9 mg particulate phosphorus [PPI, 15.1 mg total phosphorus [TP]) was lower than untreated soil (13.3 mg PP, 18.1 mg TP), due to increased aggregation and decreased surface soil slaking attributed to added C in manure. Manure application at low rates (<50 kg P ha(-1)) imparts physical benefits to surface soil, which decrease P loss potential. However, at greater application rates, P transport is appreciably greater (26.9 mg PP, 29.5 mg TP) than from untreated soil (13.3 mg PP, 18.1 mg TP).  相似文献   

13.
Leaching to ground water and tile drains are important parts of the environmental assessment of pesticides. The aims of the present study were to (i) assess the significance of preferential flow for pesticide leaching under realistic worst-case conditions for Dutch agriculture (soil profile with thick clay layer and high rainfall) and (ii) collect a high-quality data set that is suitable for testing pesticide leaching models. The movement of water, bromide, and the pesticides bentazon [3-isopropyl-1H-2, 1,3-benzothiadiazine-4(3H)-one-2,2-dioxide] and imidacloprid [1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine] was monitored in a clay soil for about 1 yr. The 1.2-ha field was located in the central part of the Netherlands (51 degrees 53' N, 5 degrees 43' E). The soil was a Eutric Fluvisol cropped with winter wheat (Triticum aestivum L.). Tile drains were present at a 0.8- to 0.9-m depth and the ground water level fluctuated between a 0.5- and 2-m depth. All chemicals were applied in spring. None of the soil concentration profiles showed bimodal concentration distributions. However, for each substance the highest concentration in drain water was found in the first drainage event after its application, which indicates preferential flow. This preferential flow is probably caused by permanent macropores that were present in the 0.3- to 1.0-m layer. At the time of the first drainage event, the drain water concentration of each substance was about an order of magnitude higher than its ground water concentration. Thus, the flux concentrations in drain water proved to be a more sensitive detector of preferential flow than the resident concentrations in the soil profile and the ground water.  相似文献   

14.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

15.
A sink for atmospheric methane (CH4) is microbial oxidation in soils. We report CH4 oxidation rates in freely and poorly drained soils on an intensively managed dairy farm. Following cattle urine application to half the plots (650 kg of nitrogen [N] ha(-1)) 31 chamber measurements were made over 100 d during autumn and winter. In the control plots, the freely and poorly drained soils' integrated CH4 oxidation rates averaged 1.8+/-0.2 and 0.6+/-0.1 kg CH4 ha(-1) yr(-1), respectively. In the poorly drained soil, the highest CH4 oxidation rates occurred when water-filled pore space (WFPS)<56% and CH4 oxidation rate declined by ninefold to near zero as WFPS increased from 56 to 68%. Urine application induced the freely and poorly drained soils' CH4 oxidation rates to decline for up to 2 mo by 0.7+/-0.2 and 0.4+/-0.1 kg CH4 ha(-1) yr(-1), respectively. The two soils' responses were thus not significantly different. After urine application, soil pore space CH4 concentration profiles suggested a simultaneous inhibition of bacteria that were CH4 oxidizers and stimulation of CH4 producers.  相似文献   

16.
Riparian ecosystems, through their unique position in the agricultural landscape and ability to influence nutrient cycles, can potentially reduce NO3 loading to surface and ground waters. The purpose of this study was to determine the fate of NO3 in shallow groundwater moving along a lateral flowpath from a grass seed cropping system through an undisturbed mixed-species herbaceous riparian area. Soil A (30-45 cm) and C horizon (135-150 cm) NO3, dissolved oxygen, and nitrous oxide concentrations were significantly higher in the cropping system than the adjacent riparian area. Nitrate concentrations in both horizons of the riparian soil were consistently at or below 0.05 mg N L(-1) while cropping system concentrations ranged from 1 to 12 mg N L(-1). Chloride data suggested that NO3 dilution occurred from recharge by precipitation. However, a sharp decrease in NO3/Cl ratios as water moved into the riparian area indicated that additional dilution of NO3 concentrations was unlikely. Riparian area A horizon soil water had higher dissolved organic carbon than the cropping system and when the riparian soil became saturated, available electron acceptors (O2, NO3) were rapidly reduced. Dissolved inorganic carbon was significantly higher in the riparian area than the cropping system for both horizons indicating high biological activity. Carbon limitation in the cropping system may have led to microbial respiration using primarily O2 and to a lesser degree NO3. Within 6 m of the riparian/cropping system transition, NO3 was virtually undetectable.  相似文献   

17.
The impact of vegetative filter strips to reduce the delivery of nonpoint source pollutants from agricultural land to inland water systems is now recognized as an important element in overall agro-ecosystem management. A glasshouse experiment was undertaken to measure the effectiveness of tree (Eucalyptus camaldulensis Dehnh. and Casuarina cunninghamiana Mq.) and pasture filter strips to intercept lateral movement of NO(3)-N in soil water. Tree treatments retained significantly more NO(3)-N associated with shallow soil water movement (between the A and B soil horizons) than bare ground. Nitrate-N removal was not significantly different between trees and pasture, and among the tree treatments. However, uptake and accumulation of NO(3)-N by pastures was significantly (P < 0.001) greater than the trees. The average rates of N accumulation were 0.82 g m(-)(2) and 1.52 g m(-2) wk(-1) for the tree plots and the pasture plots, respectively. The experiment also showed that the efficiency of NO(3)-N removal from soil solutions by trees was greater when NO(3)-N concentrations were relatively higher in the soil (81.4% removal at 20 mg L(-1) compared to 68.1% at 10 mg L(-1)).  相似文献   

18.
The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory range. Modelers need to weigh the benefits before selecting the type of data resolution they are going to use depending on the watershed size and level of accuracy required because more effort is required to prepare and calibrate the model when a fine resolution soil data is used.  相似文献   

19.
Antibiotics reach soils via spreading of manure or sewage sludge. Knowledge on the transport behavior of antibiotics in soils is needed to assess their environmental fate. The effect of flow rate and applied mass, i.e., input concentration and pulse duration, on the transport of 14C-sulfadiazine (SDZ; 4-aminoN-pyrimidin-2-yl-benzenesulfonamide) was investigated with soil column experiments and numerical studies. Sulfadiazine was applied in pulses (6.8, 68 or 306 h) under steady-state (0.051 and 0.21 cm h(-1)) and intermittent flow conditions and at two input concentrations (0.57 and 5.7 mg L(-1)). Breakthrough curves (BTCs) of 14C were measured and for one experiment concentrations of SDZ, and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) and N(1)-2-(4-hydroxypyrimidinyl)benzenesulfanilamide (4-OH-SDZ) were determined. After finalizing the leaching experiments, 14C was quantified in different slices of the columns. A lower flow rate led to remarkably lower eluted masses compared with the higher flow rates. All BTCs could be described well using a three-site attachment-detachment model for which a common set of parameters was determined. However, the BTC obtained with the high input concentration was slightly better described with a two-site isotherm-based model. The prediction of the concentration profiles was good with both model concepts. The fitted sorption capacities decreased in the order SDZ > 4-OH-SDZ > An-SDZ. Overall, the experiments reveal the presence of similar mechanisms characterizing SDZ transport. The dependence of model performance on concentration implies that although the three-site attachment-detachment model is appropriate to predict the transport of SDZ in soil columns, not all relevant processes are adequately captured.  相似文献   

20.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号