首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White lupine (Lupinus albus L.) was used as a phosphorus (P)-efficient model plant to study the effects of elevated atmospheric CO(2) concentrations on (i) P acquisition, (ii) the related alterations in root development and rhizosphere chemistry, and (iii) the functional and structural diversity of rhizosphere microbial communities, on a P-deficient calcareous subsoil with and without soluble P fertilization. In both +P (80 mg P kg(-1)) and -P treatments (no added P), elevated CO(2) (800 micromol mol(-1)) increased shoot biomass production by 20 to 35% and accelerated the development of cluster roots, which exhibit important functions in chemical mobilization of sparingly soluble soil P sources. Accordingly, cluster root formation was stimulated in plants without P application by 140 and 60% for ambient and elevated CO(2) treatments, respectively. Intense accumulation of citrate and increased activities of acid and alkaline phosphatases, but also of chitinase, in the rhizosphere were mainly confined to later stages of cluster root development in -P treatments. Regardless of atmospheric CO(2) concentrations, there was no significant effect on accumulation of citrate or on selected enzyme activities of C, N, and P cycles in the rhizosphere of individual root clusters. Discriminant analysis of selected enzyme activities revealed that mainly phosphatase and chitinase contributed to the experimental variance (81.3%) of the data. Phosphatase and chitinase activities in the rhizosphere might be dominated by the secretion from cluster roots rather than by microbial activity. Alterations in rhizosphere bacterial communities analyzed by denaturing gradient gel electrophoresis (DGGE) were related with the intense changes in root secretory activity observed during cluster root development but not with elevated CO(2) concentrations.  相似文献   

2.
Elevated atmospheric CO2 can result in larger plants returning greater amounts of residue to the soil. However, the effects of elevated CO2 on carbon (C) and nitrogen (N) cycling for different soybean varieties have not been examined. Aboveground residue of eight soybean [Glycine max (L.) Merr.] varieties was collected from a field study where crops had been grown under two different atmospheric CO2 levels [370 micromol mol(-1) (ambient) and 550 micromol mol(-1) (free-air carbon dioxide enrichment, FACE)]. Senesced residue material was used in a 60-d laboratory incubation study to evaluate potential C and N mineralization. In addition to assessing the overall effects of CO2 level and variety, a few specific variety comparisons were also made. Across varieties, overall residue N concentration was increased by FACE, but residue C concentration was only slightly increased. Overall residue C to N ratio was lower under FACE and total mineralized N was increased by FACE, suggesting that increased N2 fixation impacted residue decomposition; total mineralized C was also slightly increased by FACE. Across CO2 levels, varietal differences were also observed with the oldest variety having the lowest residue N concentration and highest residue C to N ratio; mineralized N was lowest in the oldest variety, illustrating the influence of high residue C to N ratio. It appears (based on our few specific varietal comparisons) that the breeding selection process may have resulted in some varietal differences in residue quality which can result in increased N or C mineralization under elevated CO2 conditions. This limited number of varietal comparisons indicated that more work investigating varietal influences on soil C and N cycling under elevated CO2 conditions is required.  相似文献   

3.
The rise in atmospheric CO(2) concentration coupled with its direct, often positive, effect on the growth of plants raises the question of the response of invasive plants to elevated atmospheric CO(2) levels. Response of two invasive weeds [purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.)] to CO(2) enrichment was tested. Plants were exposed to ambient (375 micromol mol(-1)) or elevated CO(2) (ambient + 200 micromol mol(-1)) for 71 d in open top chambers. Photosynthetic rate did not differ between CO(2) treatments for either species. Conductance was lower in purple nutsedge and tended to be lower in yellow nutsedge. Purple nutsedge had higher instantaneous water use efficiency; a similar trend was noted for yellow nutsedge. Purple nutsedge had greater leaf area, root length and numbers of tubers and tended to have more tillers under high CO(2). In yellow nutsedge, only tuber number increased under CO(2) enrichment. Leaf dry weight was greater for both species when grown under elevated CO(2). Only purple nutsedge made seed heads; CO(2) level did not change seed head dry weight. Root dry weight increased under the high CO(2) treatment for purple nutsedge only, but tuber dry weight increased for both. Total dry weight of both species increased at elevated CO(2). Purple nutsedge (under elevated CO(2)) tended to increase allocation belowground, which led to greater root-to-shoot ratio (R:S); R:S of yellow nutsedge was unaffected by CO(2) enrichment. Findings suggest both species, purple more than yellow nutsedge, may be more invasive in a future high-CO(2) world.  相似文献   

4.
The positive impact of elevated atmospheric CO(2) concentration on crop biomass production suggests more carbon inputs to soil. Further study on the effect of elevated CO(2) on soil carbon and nitrogen dynamics is key to understanding the potential for long-term carbon storage in soil. Soil samples (0- to 5-, 5- to 10-, and 10- to 20-cm depths) were collected after 2 yr of grain sorghum [Sorghum bicolor (L.) Moench.] production under two atmospheric CO(2) levels: (370 [ambient] and 550 muL L(-1) [free-air CO(2) enrichment; FACE]) and two water treatments (ample water and limited water) on a Trix clay loam (fine, loamy, mixed [calcareous], hyperthermic Typic Torrifluvents) at Maricopa, AZ. In addition to assessing treatment effects on soil organic C and total N, potential C and N mineralization and C turnover were determined in a 60-d laboratory incubation study. After 2 yr of FACE, soil C and N were significantly increased at all soil depths. Water regime had no effect on these measures. Increased total N in the soil was associated with reduced N mineralization under FACE. Results indicated that potential C turnover was reduced under water deficit conditions at the top soil depth. Carbon turnover was not affected under FACE, implying that the observed increase in soil C with elevated CO(2) may be stable relative to ambient CO(2) conditions. Results suggest that, over the short-term, a small increase in soil C storage could occur under elevated atmospheric CO(2) conditions in sorghum production systems with differing water regimes.  相似文献   

5.
Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.  相似文献   

6.
Elevated carbon dioxide (CO2) concentrations in the atmosphere can stimulate plant growth and yield, whereas ground-level ozone (O3) concentrations cause the opposite effect in many areas of the world. Recent experiments show that elevated CO2 can protect some plants from O3 stress, but this has not been tested for most crop species. Our objective was to determine if elevated CO2 protects Irish potato (Solanum tuberosum L.) from foliar injury and suppression of growth and yield caused by O3. An O3-resistant cultivar (Superior) and an O3-sensitive cultivar (Dark Red Norland) were exposed from within 10 d after emergence to maturity to mixtures of three CO2 and three O3 treatments in open-top field chambers. The three CO2 treatments were ambient (370 microL L(-1)) and two treatments with CO2 added to ambient CO2 for 24 h d(-1) (540 and 715 microL L(-1)). The O3 treatments were charcoal-filtered air (15 nL L(-1)), nonfiltered air (45 nL L(-1)), and nonfiltered air with O3 added for 12 h d(-1) (80 nL L(-1)). Elevated O3 and CO2 caused extensive foliar injury of Dark Red Norland, but caused only slight injury of Superior. Elevated CO2 increased growth and tuber yield of both cultivars, whereas elevated O3 generally suppressed growth and yield, mainly of Dark Red Norland. Elevated CO2 appeared to protect Dark Red Norland from O3-induced suppression of shoot, root, and tuber weight as measured at midseason but did not protect either cultivar from O3 stress at the final harvest. The results further illustrate the difficulty in predicting effects of O3 + CO2 mixtures based on the effects of the individual gases.  相似文献   

7.
Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.  相似文献   

8.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   

9.
The results of a 3-yr study on the effects of elevated CO2 on soil N and P, soil pCO2, and calculated CO2 efflux in a fire-regenerated Florida scrub oak ecosystem are summarized. We hypothesized that elevated CO2 would cause (i) increases in soil pCO2 and soil respiration and (ii) reduced levels of soil-available N and P. The effects of elevated CO2 on soil N availability differed according to the method used. Results of resin lysimeter collections and anion exchange membrane tests in the field showed reduced NO3- in soils in Years 1 and 3. On the other hand, re-analysis of homogenized, buried soil bags after 1 yr suggested a relative increase in N availability (lower C to N ratio) under elevated CO2. In the case of P, the buried bags and membranes suggested a negative effect of CO2 on P during the first year; this faded over time, however, as P availability declined overall, probably in response to P uptake. Elevated CO2 had no effect on soil pCO2 or calculated soil respiration at any time, further suggesting that plant rather than microbial uptake was the primary factor responsible for the observed changes in N and P availability with elevated CO2.  相似文献   

10.
Spartina alterniflora was transplanted into dieback areas of a salt marsh in southeast Louisiana at two elevations (ambient and +30 cm) with and without macro- (N, P, and K) and micronutrient (Fe, Mn, Cu, and Zn) additions to determine if transplant success is dependent on increasing elevation or nutrients.Spartina alterniflora transplanted into elevated plots had more than twice the above- and belowground biomass as compared to nonelevated plots after three months of growth. Additionally, there was significantly more vegetative reproduction (greater culm density and number of newly produced culms) in elevated plots as compared to plots at ambient elevation. Macronutrient additions increased culm densities only in elevated plots.Spartina alterniflora transplanted into nonelevated plots had lower survival rates even when transplants received nutrient additions. These results suggest thatS. alterniflora may be transplanted successfully into degraded salt-marsh areas if elevation is increased. The addition of nutrients without a concomitant increase in elevation is not sufficient for transplant success.  相似文献   

11.
利用乌鲁木齐市环境空气超级站中MAAP-5012型黑碳仪对乌鲁木齐市黑碳气溶胶进行连续一年的监测,并结合乌鲁木齐环境空气质量城市站小时数据和日数据及气象数据对黑碳气溶胶变化情况进行综合分析.结果 表明:2019年6月至2020年5月乌鲁木齐黑碳气溶胶浓度日均值为1 506(±1 096) ng/m3,本底值为575 n...  相似文献   

12.
Variation in root density along stream banks   总被引:1,自引:0,他引:1  
While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion.  相似文献   

13.
This study investigated the effects of organic and inorganic nutrients on the microbial degradation of the common soil contaminant pyrene. The material used in this investigation was collected from potted trees that had been growing for over a year in a soil artificially contaminated with polycyclic aromatic hydrocarbons. Soil was removed from the nonroot (bulk) and root (rhizosphere) zones of these pots and used in mineralization studies that tracked microbial degradation of 14C-pyrene. The factors influencing degradation in these zones were then tested by amendment with essential inorganic nutrients or with root-derived materials. As expected, pyrene mineralization was greater in soil removed from the rhizosphere than in bulk soil. The rate of mineralization in rhizosphere soil was inhibited by inorganic nutrient amendment, whereas nutrients stimulated mineralization in the bulk soil. Pyrene mineralization in bulk soil was also increased by the addition of root extracts intended to mimic exudation by living roots. However, amendment with excised fine roots that were allowed to decay over time in soil initially inhibited mineralization. With time, the rate of mineralization increased, eventually exceeding that of unamended bulk soil. Combined, the initial inhibition and subsequent stimulation produced a zero net impact of decaying fine roots on bulk soil mineralization. Our results, in conjunction with known temporal patterns of fine root dynamics in natural systems, support the idea that seasonal variations in nutrient and substrate availability may influence the long-term effect of plants on organic degradation in soil, possibly reducing or negating the beneficial effects of vegetation that are often observed in short-term studies.  相似文献   

14.
The excreted estrogen rate of all livestock in the United States is estimated at 134 kg d. The influence of manure treatment on the fate of estrogens is critical in deciding the recycling of over 300 million dry tons of livestock produced annually. The effects of two common manure management practices, heated composting and ambient temperature decomposition, on the fate of 17β-estradiol in poultry litter were determined. A mixture of poultry litter, wood chips, and straw was amended with [C]17β-estradiol and allowed to undergo decomposition with a laboratory-scale heated composter (HC) or room temperature incubation (RTI) for 24 d. Radiolabel in the finished products was fractionated into water-extractable, acetone-extractable, nonextractable, and mineralized fractions. Total 17β-estradiol radioactive residues in the HC and RTI ( = 2) treatments were not different ( > 0.05), except that statistically less 17β-estradiol was mineralized to CO during HC than RTI (1.1 vs. 10.0% for HC and RTI, respectively). Estrone was the major degradation product in extracts of HC and RTI treatments as determined by liquid chromatography/mass spectrometry analyses. The nonextractable residues indicated no quantitative differences among the humins between the treatments. An estimated 3% of the fortified estrogenicity remained after HC treatment, and 15% of the fortified estrogenicity remained after RTI treatment. If reduction of water-removable, biologically active 17β-estradiol is the treatment goal, then HC treatment would be slightly preferred over ambient temperature degradation. However, unmanaged, ambient temperature litter piles are less costly and time consuming for food animal producers and result in greater mineralization and similar immobilization of estradiol.  相似文献   

15.
Infection by ectomycorrhizal (ECM) fungi may benefit hybrid poplar growing in contaminated soils by providing greater access to water and nutrients and possibly protecting the trees from direct contact with toxic contaminants. The objective of this research was to determine the effect of colonization of the ECM fungus Pisolithus tinctorius (Pers.) Coker & Couch on hybrid poplar fine root production, biomass and N and P uptake when grown in diesel-contaminated soil (5000 mg diesel fuel kg soil(-1)). Commercially available Mycogrow Tree Tabs were the source of inoculum. A minirhizotron camera was used to provide the data necessary for estimating fine root production. Colonization of hybrid poplar roots (P. deltoides x [P. laurifolia x P. nigra] cv. Walker) by P. tinctorius increased total fine root production in diesel-contaminated soil to 56.58 g m(-2) compared to 22.59 g m(-2) in the uncolonized, diesel-contaminated treatment. Hybrid poplar leaf N and P concentrations were significantly greater in the diesel-contaminated/ECM-colonized treatment compared to the diesel-contaminated/uncolonized treatment after 12 wk, while significantly less diesel fuel was recovered from the soil of the uncolonized treatment compared to the colonized treatment. Both planted treatments removed more contaminants from the soil than an unplanted control. Significantly greater concentrations of total petroleum hydrocarbons (TPH) were found sequestered in hybrid poplar root/fungal-sheath complexes from the colonized treatment compared to the roots of the uncolonized treatment. The results of this study indicate that over a 12-wk growth period, ECM colonization of hybrid poplar in diesel-contaminated soils increased fine root production and whole-plant biomass, but inhibited removal of TPH from the soil.  相似文献   

16.
基于模糊数学的大气环境质量综合评价   总被引:1,自引:0,他引:1  
魏毅 《四川环境》2012,31(3):61-64
鉴于大气环境质量评价中客观存在的不确定性和模糊性,运用模糊数学方法,选用SO2、NO2、PM10作为评价因子,参照大气环境质量标准,通过计算污染因子权重分配系数和隶属度对乌鲁木齐市2004年至2010年大气环境质量给出客观的评价,综合评价结果表明乌鲁木齐市总体大气环境质量为轻度污染(三级),但空气质量在逐年好转,SO2和PM10依然是乌鲁木齐市空气质量的制约因子,且NO2的权重在逐年上升。模糊综合评判考虑环境空气质量评价的模糊性,根据污染物浓度对各级别的贴近度考察污染物的级别,评价结果比较直观,可以细致准确的评价环境质量等级,评价结果基本可以反映环境空气污染的情况。  相似文献   

17.
The underlying mechanisms of interaction between the symbiotic nitrogen-fixation process and main physiological processes, such as assimilation, nutrient allocation, and structural growth, as well as effects of nitrogen fixation on plant responses to global change, are important and still open to more investigation. Appropriate models have not been adequately developed. A dynamic ecophysiological model was developed in this study for a legume plant [Glycine max (L.) Merr.] growing in northern China. The model synthesized symbiotic nitrogen fixation and the main physiological processes under variable atmospheric CO2 concentration and climatic conditions, and emphasized the interactive effects of these processes on seasonal biomass dynamics of the plant. Experimental measurements of ecophysiological quantities obtained in a CO2 enrichment experiment on soybean plants, were used to parameterize and validate the model. The results indicated that the model simulated the experiments with reasonable accuracy. The R2 values between simulations and observations are 0.94, 0.95, and 0.86 for total biomass, green biomass, and nodule biomass, respectively. The simulations for various combinations of atmospheric CO2 concentration, precipitation, and temperature, with or without nitrogen fixation, showed that increasing atmospheric CO2 concentration, precipitation, and efficiency of nitrogen fixation all have positive effects on biomass accumulation. On the other hand, an increased temperature induced lower rates of biomass accumulation under semi-arid conditions. In general, factors with positive effects on plant growth tended to promote each other in the simulation range, except the relationship between CO2 concentration and climatic factors. Because of the enhanced water use efficiency with a higher CO2 concentration, more significant effects of CO2 concentration were associated with a worse (dryer and warmer in this study) climate.  相似文献   

18.
In order to investigate snowpack sensitivity to temperature increases and end‐member atmospheric moisture conditions, we applied a well‐constrained energy‐ and mass‐balance snow model across the full elevation range of seasonal snowpack using forcing data from recent wet and dry years. Humidity scenarios examined were constant relative humidity (high) and constant vapor pressure between storms (low). With minimum calibration, model results captured the observed magnitude and timing of snowmelt. April 1 snow water equivalent (SWE) losses of 38%, 73%, and 90% with temperature increases of 2, 4, and 6°C in a dry year centered on areas of greatest SWE accumulation. Each 2°C increment of warming also resulted in seasonal snowline moving upslope by 300 m. The zone of maximum melt was compressed upward 100–500 m with 6°C warming, with the range reflecting differences in basin hypsometry. Melt contribution by elevations below 2,000 m disappeared with 4°C warming. The constant‐relative‐humidity scenario resulted in 0–100 mm less snowpack in late spring vs. the constant‐vapor‐pressure scenario in a wet year, a difference driven by increased thermal radiation (+1.2 W/m2) and turbulent energy fluxes (+1.2 W/m2) to the snowpack for the constant‐relative‐humidity case. Loss of snowpack storage and potential increases in forest evapotranspiration due to warming will result in a substantial shift in forest water balance and present major challenges to land management in this mountainous region.  相似文献   

19.
综合考虑外界潜在污染源对屠宰厂的环境影响,从大气环境防护距离、卫生防护距离及外界潜在污染源的环境影响评价出发,分析污染评价因子的选取、标准值的确定、预测模式的选取和预测结果评价,实例探讨了屠宰厂项目环境防护距离的确定方法。结果表明,拟建化工项目未对屠宰厂的环境空气质量造成影响,TSP是外界污染源对屠宰厂影响最大的污染因子,综合计算大气环境防护距离值和卫生防护距离值得到屠宰厂的环境防护距离为300m。  相似文献   

20.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号