首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Carbon Management in Agricultural Soils   总被引:11,自引:0,他引:11  
World soils have been a major source of enrichment of atmospheric concentration of CO2 ever since the dawn of settled agriculture, about 10,000 years ago. Historic emission of soil C is estimated at 78 ± 12 Pg out of the total terrestrial emission of 136 ± 55 Pg, and post-industrial fossil fuel emission of 270 ± 30 Pg. Most soils in agricultural ecosystems have lost 50 to 75% of their antecedent soil C pool, with the magnitude of loss ranging from 30 to 60 Mg C/ha. The depletion of soil organic carbon (SOC) pool is exacerbated by soil drainage, plowing, removal of crop residue, biomass burning, subsistence or low-input agriculture, and soil degradation by erosion and other processes. The magnitude of soil C depletion is high in coarse-textured soils (e.g., sandy texture, excessive internal drainage, low activity clays and poor aggregation), prone to soil erosion and other degradative processes. Thus, most agricultural soils contain soil C pool below their ecological potential. Adoption of recommend management practices (e.g., no-till farming with crop residue mulch, incorporation of forages in the rotation cycle, maintaining a positive nutrient balance, use of manure and other biosolids), conversion of agriculturally marginal soils to a perennial land use, and restoration of degraded soils and wetlands can enhance the SOC pool. Cultivation of peatlands and harvesting of peatland moss must be strongly discouraged, and restoration of degraded soils and ecosystems encouraged especially in developing countries. The rate of SOC sequestration is 300 to 500 Kg C/ha/yr under intensive agricultural practices, and 0.8 to 1.0 Mg/ha/yr through restoration of wetlands. In soils with severe depletion of SOC pool, the rate of SOC sequestration with adoption of restorative measures which add a considerable amount of biomass to the soil, and irrigated farming may be 1.0 to 1.5 Mg/ha/yr. Principal mechanisms of soil C sequestration include aggregation, high humification rate of biosolids applied to soil, deep transfer into the sub-soil horizons, formation of secondary carbonates and leaching of bicarbonates into the ground water. The rate of formation of secondary carbonates may be 10 to 15 Kg/ha/yr, and the rate of leaching of bicarbonates with good quality irrigation water may be 0.25 to 1.0 Mg C/ha/yr. The global potential of soil C sequestration is 0.6 to 1.2 Pg C/yr which can off-set about 15% of the fossil fuel emissions.  相似文献   

2.
Arable land soils generally have lower organic carbon (C) levels than soils under native vegetation; increasing the C stocks through improved management is suggested as an effective means to sequester CO2 from the atmosphere. China's arable lands, accounting for 13% of the world's total, play an important role in soil C sequestration, but their potential to enhance C sequestration has not yet been quantitatively assessed. The C sequestration by agricultural soils is affected by many environmental factors (such as climate and soil conditions), biological processes (crop C fixation, decomposition and transformation), and crop and soil management (e.g. tillage and manure application). Estimation of the C sequestration potential requires the quantification of the combined effects of these factors and processes. In this study, we used a coupled remote sensing- and process-based ecosystem model to estimate the potential for C sequestration in agricultural soils of China and evaluated the sustainability of soil C uptake under different soil management options. The results show that practicing no-tillage on 50% of the arable lands and returning 50% of the crop residue to soils would lead to an annual soil C sequestration of 32.5 Tg C, which accounts for about 4% of China's current annual C emission. Soil C sequestration with improved soil management is highly time-dependent; the effect lasted for only 20–80 years. Generally, practicing no-tillage causes higher rate and longer sustainability of soil C sequestration than only increasing crop residue into soils. The potential for soil C sequestration varied greatly among different regions due to the differences in climate, soil conditions and crop productivity.  相似文献   

3.
Because volcanic soils store large amounts of soil organic carbon (SOC), they play a far more important role in the carbon (C) cycle than their limited global coverage suggests. We analysed the C released as CO2 from a range of volcanic soils under natural conditions and analysed the influence of environmental variables (moisture and temperature), substrate availability (as assessed from the contents of various SOC fractions and the inputs of plant residues from litterfall), respiratory agents (roots, microorganisms and decomposing enzymes) and other pedological features of the topsoils (0–30 cm depth) on the CO2 efflux rates over a 2-year experimental period. High CO2 efflux rates (419 g C-CO2 m?2 y?1 as the average for Andisols) were obtained that were related to significant decreases in the amount of SOC stored. CO2 release was strongly controlled by soil moisture, although it was inhibited in the Andisols with the highest moisture levels (above 50 kg m?2 in topsoil). It was not responsive to the availability of decomposing microorganisms or enzymes and appeared more related to the inputs of easily decomposable plant residues than to the amount of either labile or recalcitrant SOC. Among the SOC pools, only the water-soluble C in saturated paste extracts (WSCse) of air-dried soil samples was consistently correlated with the CO2 efflux rates. The desiccation of Andisols appeared to induce the release of previously stabilised SOC, which was readily mineralised when the moisture conditions became favourable. The results of this study indicate that SOC storage in Andisols is highly vulnerable to drying-wetting processes even in unmanaged natural ecosystems and that microclimate conditions can be critical for successful C sequestration in these soils.  相似文献   

4.
It is generally accepted that cropland soils could be managed to store significant carbon (C), however little information is available regarding the cropland soil C sequestration potential of the Loess Plateau in northern China. This study aimed to estimate the cropland soil C sequestration potential in this area using the United Nations Intergovernmental Panel on Climate Change (IPCC) method with region-specific C stock change factors. The results show that the C sequestration potential can reach 6.054 Tg C yr?1 (1Tg?=?1012 g) in cropland soils of the Loess Plateau using techniques that are currently available (no-tillage and high residue incorporation). Although the results show a high degree of uncertainty in this estimate with 95 % confidence interval ranges from 2.623 to 11.94 Tg C yr?1, our study suggests that cropland soil C sequestration could play a meaningful role in helping to mitigate greenhouse gas increases in the Chinese Loess Plateau.  相似文献   

5.
Increasing soil carbon (C) storage is crucial to addressing climate change and ensuring food security. The C sequestration potential of the world’s cropland soil is 0.4–0.8 Pg soil C year?1, which may be achieved through the adoption of recommended management practices (RMPs), including fertilizer management. This study aimed to quantitatively evaluate the influence of long-term application of different fertilizers and straw retention on soil organic carbon (SOC) storage, to compare the calculated response ratios with Intergovernmental Panel on Climate Change (IPCC)-recommended default relative stock change factors, and to propose recommendations for enhancing SOC sequestration. The meta-analysis indicated that the long-term application of chemical fertilizers (CF), organic fertilizers (OF), combined chemical and organic fertilizers (CFOF), and straw return (SR) significantly enhanced the SOC storage. Response ratios varied significantly (p < 0.05) across different fertilization measures and climatic zones, and was sensitive to the initial SOC content. The mean response ratio was 0.94 for no fertilizer (NF), 1.08 for CF, 1.48 for OF, 1.38 for CFOF, and 1.28 for SR. When IPCC default values for response ratios were applied, SOC storage with OF and CFOF treatments in warm temperate regions with a dry climate was underestimated by 26%, and in the cool temperate region with a moist climate was overestimated by 25% (p < 0.05). Analysis showed that sustained application of organic fertilizers and straw return could be a beneficial measures to mitigate climate change and ensure food security in China. Our findings highlight the importance of deriving SOC stock change factors for a detailed classification of cropland by fertilizer management, climate, and soil types in order to more accurately reflect the effects of policy measures.  相似文献   

6.
The role of soil organic matter (SOM) in agricultural systems has been widely studied in conjunction with the potential for greenhouse gas mitigation. However, the link between SOM accumulation in croplands, crop productivity and yield stability has not yet been clearly established. In this paper, we collected data on provincial yearly crop productivity (yields, total cropland area) during 1949–1998 and the average SOM contents in croplands sampled and determined from the National Soil Survey in 1979–1982 of mainland China. The cereal productivity was assessed both with an overall mean of 1949–1998 and with the mean values for different time periods within this overall time, respectively. The yield variability within a single stabilizing stage, and between the fluctuating years, was calculated as a negative measure of yield stability. The correlation between SOM and cereal productivity was very significant for most provinces, but the relationship has become less significant as we approach the present. Moreover, the average yield variability was very significantly and negatively correlated with the cropland SOM level. The findings support our previous hypothesis from case studies, that C sequestration in China's croplands may provide win–win benefits, by enhancing crop productivity and stabilizing yield. This offers a sound basis as a greenhouse gas mitigation strategy by promoting C sequestration in croplands, and enhancing food security in China's agriculture.  相似文献   

7.
Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were collected. Statistical analysis of SOC contents and soil properties related to organic carbon storage were performed. The provincial total topsoil SOC stock was estimated to be O. 1 Pg with an extended pool of 0.4 Pg taking soil depth of 1 m, being relatively small compared to its total land area of lOl?00 km^2. One quarter of this topsoil stock was found in the soils of the Taihu Lake region that occupied 1/6 of the provincial arable area. Paddy soils accounted for over 50% of this stock in terms of SOC distribution among the soil types in the province. Experimental data from experimental farms widely distributed in the province showed that SOC storage increased consistently over the last 20 years despite a previously reported decreasing tendency during the period between 1950--1970. The evidence indicated that agricultural management practices such as irrigation, straw return and rotation of upland crops with rice or wheat crops contributed significantly to the increase in SOC storage. The annual carbon sequestration rate in the soils was in the range of 0.3-3.5 tC/(hm^2. a), depending on cropping systems and other agricultural practices. Thus, the agricultural production in the province, despite the high input, could serve as one of the practical methods to mitigate the increasing air CO2.  相似文献   

8.
Agricultural production plays an important role in affecting atmospheric greenhouse gas concentrations. Field measurements were conducted in Quzhou County, Hebei Province in the North China Plains to quantify carbon dioxide (CO2) and nitrous oxide (N2O) emissions from a winter wheat–maize rotation field, a common cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, Denitrification–Decomposition or DNDC, for its applicability for the cropping system. The validated DNDC was then used for predicting impacts of three management alternatives (i.e., no-till, increased crop residue incorporation and reduced fertilizer application rate) on CO2 and N2O emissions from the target field. Results from the simulations indicated that (1) CO2 emissions were significantly affected by temperature, initial SOC, tillage method, and quantity and quality of the organic matter added in the soils; (2) increases in temperature, initial SOC, total fertilizer N input, and manure amendment substantially increased N2O emissions; and (3) temperature, initial SOC, tillage, and quantity and quality of the organic matter added in the soil all had significant effects on global warming. Finally, five 50-year scenarios were simulated with DNDC to predict their long-term impacts on crop yield, soil C dynamics, nitrate leaching losses, and N2O emissions. The modelled results suggested that implementation of manure amendment or crop residue incorporation instead of increased fertilizer application rates would more efficiently mitigate GHG emissions from the tested agro-ecosystem. The multi-impacts provided a sound basis for comprehensive assessments on the management alternatives.  相似文献   

9.
The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa)–wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30–40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57–1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030.  相似文献   

10.
研究农田土壤自养微生物碳同化潜力,对全面认识农田生态系统碳吸收和碳储存有着重要意义.选取6种典型农田土壤,通过14C连续标记示踪技术结合密闭系统模拟培养,量化了土壤自养微生物碳同化潜力及其向土壤活性碳库组分转化,同时结合分子生物学技术及酶学分析方法,探讨了不同土壤自养微生物细菌固碳功能基因(cbbL)丰度及关键酶(RubisCO)活性.结果表明,土壤自养微生物具有可观的CO2同化潜力,在本实验条件下,全球每年表层(0~20 cm)土壤通过自养微生物的同化作用可固定的碳为0.57~7.3 Pg.供试土壤的14C土壤有机碳(14C-SOC)含量范围为10.63~133.81 mg·kg-1,而14C可溶性有机碳(14C-DOC)、14C微生物生物量碳(14C-MBC)含量范围分别为0.96~8.10 mg·kg-1、1.70~49.16 mg·kg-1.土壤可溶解性有机碳(DOC)、微生物量碳(MBC)和SOC的更新率分别为5.07%~14.3%、2.51%~13.12%和0.09%~0.64%.土壤细菌cbbL丰度范围为2.40×107~1.9×108copies·g-1,且RubisCO酶活性(CO2/soil)范围为34.06~71.86 nmol·(g·min)-1.相关分析表明,土壤14C-SOC与14C-MBC及RubisCO酶活性均呈极显著正相关关系(P<0.01).说明土壤对大气CO2的同化作用主要是由自养微生物参与的同化过程,且较高的RubisCO酶活性意味着较高的自养微生物CO2同化潜力.  相似文献   

11.
陶宝先 《环境科学研究》2017,30(12):1927-1933
为研究我国北方典型设施菜地的土壤CO2排放特征及其影响因素,通过原位监测手段,研究山东省寿光市农田转变为不同种植年限(6、12 a)设施菜地及设施菜地荒废12 a后土壤CO2排放规律及影响因素.结果表明:①种植6 a设施菜地较农田具有较高的土壤CO2排放量,可能是由于设施菜地种植过程中大量施加有机肥造成的,并且设施菜地土壤温度及含水率较高,增加了土壤蔗糖酶活性,加剧土壤CO2排放.②当种植年限超过10 a,设施菜地施肥量减少,降低了土壤微生物可利用底物的供应.因此,种植12 a设施菜地土壤CO2排放量降至农田水平.③种植6 a设施菜地土壤的w(DOC)(DOC表示水溶性有机碳)比农田较高.④土壤CO2排放年内分配不均匀,表现为农田及荒废设施菜地土壤CO2排放主要集中在5—8月,其排放量占全年的75.09%、87.02%,峰值出现在7月.种植6 a设施菜地土壤CO2排放主要集中在5—8月和11月—翌年2月,两阶段排放量分别占全年的48.48%、42.34%,峰值分别出现在7月、12月.研究显示,农田转变为设施菜地短期(种植6 a)内可显著促进土壤CO2排放及DOC的输出,但随着种植年限延长至12 a,土壤CO2排放降至农田水平.   相似文献   

12.
The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.  相似文献   

13.
孙昭安  朱彪 《环境科学》2023,44(12):6857-6868
已有研究表明除了作物碳(根际沉积碳和秸秆碳)对农田土壤有机碳(SOC)的输入外,土壤碳还来源于土壤自养微生物固定SOC的贡献以及土壤无机碳(SIC)的固定(无机化学途径和微生物的生物矿化途径).农田SOC的高低主要受到外源作物碳输入和原有SOC分解的平衡作用.作物碳输入在短期内通常促进SOC的分解,呈现正(根际)激发效应.通过整合分析主要作物的根际激发效应和秸秆还田的激发效应的研究,发现作物根系生长和秸秆还田引起的(根际)激发效应大小平均值分别为75%和67%.尽管秸秆还田通过激发效应引起SOC分解的额外释放,但是土壤残留秸秆碳通常大于激发效应导致SOC的额外损失,因此秸秆还田可能增加SOC的储量.在农田系统中,秸秆碳和根际沉积碳往往共存,这导致土壤碳输入和输出至少有3个碳源(根际沉积碳、秸秆碳和土壤碳),由于多碳源体系的区分方法存在挑战,目前这两种作物碳(根际沉积碳和秸秆碳)对SOC分解的激发效应影响是不清晰的.最后,提出了新量化方法,可以多源区分根际CO2排放以及SOC中作物碳输入的碳源,以及区分碱性土壤中无机化学和微生物途径对SIC的贡献.研究有助于提高对农田土壤SOC和SIC输入和输出途径的理解,以及农田土壤碳平衡评估的精确度.  相似文献   

14.
Soil carbon sequestration in a changing global environment   总被引:1,自引:0,他引:1  
Throughout its long history the Earth has undergone warm periods with high atmospheric concentrations of greenhouse gases (GHG), and has responded with different buffering mechanisms whereby atmospheric C has been transferred to other geochemical compartments. Strategies for the mitigation and adaptation to the current climatic forcing may thus be generated by the acceleration of such natural mechanisms, especially those involved in short cycles, mainly in the biosphere and the pedosphere. Although these contain smaller C stocks than other compartments (< 0.01% of the total C), they circulate large amounts of C from the atmosphere through photosynthesis and mineral weathering (e.g., 120 Pg C are circulated through terrestrial ecosystems and total C in the atmospheric compartment is 805 Pg C). Increased C sequestration can thus be achieved in terrestrial ecosystems, by: (1) favouring growth of biomass; (2) promoting and facilitating carbonation processes; (3) reducing erosion and favouring pedogenesis; (4) developing organic matter-rich horizons; (5) recovering degraded or contaminated soils, and/or (6) managing waste by use of systems that minimize emissions of GHG. Within the latter option, the following actions are considered here in more detail: 1) production of Technosols, and 2) production of biochar. All of the above options should form part of a strategy for the mitigation and adaptation to global climate change. In this review, we analyze those focused on promoting soil conservation, soil restoration and soil formation.  相似文献   

15.
为揭示黄土高原人工刺槐林恢复过程中土壤微生物碳降解酶活性的变化特征及与碳组分的响应关系,研究该区域不同恢复年限刺槐林土壤碳库组分、碳降解酶活性、微生物呼吸及其熵值的特征,探讨土壤微生物碳降解酶的变化及与碳库组分的关系.结果 表明,微生物呼吸(MR)随刺槐林龄增加呈先增加后减小趋势,微生物代谢熵(qCO2)随刺槐林龄增加...  相似文献   

16.
秸秆与氮肥配比对农田土壤内外源碳释放的影响   总被引:4,自引:2,他引:2  
秸秆配施氮肥调节C/N比不仅影响外源秸秆的矿化,也影响内源土壤有机碳(SOC)的分解(即激发效应),因此研究秸秆与氮肥配比对土壤内外源有机碳分解的影响,对于农田温室气体减排和土壤肥力提升具有双重意义.本研究以山东桓台农田土壤为研究对象,为了探究秸秆与氮肥的配比对秸秆与SOC分解的影响,在不同氮肥水平下,采用13C标记玉米秸秆进行室内土壤培养32周,设置4个处理:CK、秸秆(S)、秸秆+低量尿素(SN1)和秸秆+高量尿素(SN2).在整个培养期进行16次动态取样,借助13C两元线性模型,拆分土壤释放CO2中源于秸秆和SOC的比例.结果表明,随着培养时间的进行,SOC分解对土壤释放CO2的贡献呈先减少后升高的趋势,相反,秸秆矿化对土壤释放CO2的贡献呈先升高后减少的趋势,到培养期末,SOC和秸秆分解对土壤CO2释放的贡献分别为0.84~0.86和0.14~0.16;在整个培养期,施氮对秸秆累计分解的影响呈先增加后减少的趋势,高氮和低氮施用对秸秆分解的促进程度最高分别为15.8%和7.9%,经历整个培养期,低氮抑制秸秆幅度达到7.1%,而高氮呈轻度促进秸秆分解的趋势(0.7%).在整个培养期,秸秆配施不同氮量对SOC矿化的激发效应程度呈先升高后降低趋势,在第7 d取样达到最高为55%~148%,并且随着施氮量增加而升高,随着培养时间的进行,各处理的激发效应程度趋于相等,约为50%.因此,秸秆配施氮肥调节C:N不仅影响外源秸秆对SOC的贡献,也影响内源SOC的分解,进而影响土壤碳的固持,经过整个培养期,土壤残留秸秆碳不能完全补偿因激发效应导致SOC的损失,导致SOC库的净亏损.  相似文献   

17.
Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1–13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.  相似文献   

18.
毛霞丽  邱志腾  张爽  沈倩  章明奎 《环境科学》2020,41(6):2842-2851
土壤团聚体的形成和稳定对于有机碳的转化和积累具有重要意义,然而不同母质发育土壤团聚体对有机碳的物理保护作用及其与有机碳矿化之间的关系仍不清楚.本文以石灰岩、第四纪红土、花岗岩、玄武岩和红砂岩母质发育的典型土壤为对象,研究添加玉米秸秆7 d和184 d时土壤团聚体和各组分有机碳的变化规律,分析不同母质土壤有机碳矿化的主要影响因素.结果表明,不添加秸秆时,所有母质土壤以1.0~0.5、 0.5~0.25和0.25 mm粒级团聚体为主,添加玉米秸秆有效促进了2 mm和2~1 mm粒级团聚体的形成.石灰岩、第四纪红土和玄武岩土壤形成水稳性大团聚体并且保持其稳定的能力高于花岗岩和红砂岩土壤.添加玉米秸秆培养184 d,石灰岩、第四纪红土和玄武岩土壤有机碳的累积矿化率显著(P0.05)低于花岗岩和红砂岩土壤.相关性分析表明,土壤有机碳的累积矿化率与游离态有机碳的比例极显著(P0.01)正相关,而与0.25 mm团聚体有机碳的比例极显著(P0.01)负相关.利用~(13)C核磁共振(~(13)C-NMR)技术对土壤有机碳进行结构表征,结果显示团聚体内轻组有机碳的分解程度低于游离态轻组有机碳,且石灰岩、第四纪红土和玄武岩土壤这两个组分有机碳的分解程度都低于其他母质土壤,直接证实了团聚体对于有机碳的物理保护作用.成土母质通过控制土壤胶体的数量和性质致使团聚体及有机碳分布对输入外源有机物质的响应存在较大差异,进而影响有机碳的矿化.石灰岩、第四纪红土和玄武岩土壤中团聚体稳定性高且对有机碳的保护容量大,有利于有机碳的积累和稳定.  相似文献   

19.
生物炭对农田土壤CO2排放的影响研究进展   总被引:1,自引:0,他引:1  
生物炭是生物质在缺氧或者限氧条件下经热解后产生的富碳产物。目前,生物炭被广泛应用于农业生产领域,可改善土壤质量,提高农田土壤碳汇。生物炭还田后,使土壤物理、化学和生物学等性质发生变化进而影响土壤CO2的排放。本文从生物炭理化特性、土壤性质以及生物炭稳定性等角度综述生物炭对土壤CO2排放的影响。主要内容包括不同炭化温度和生物质来源的生物炭特性(pH、比表面积、孔径、挥发分和灰分等)及其对土壤CO2排放的影响;生物炭还田土壤特性变化及其对土壤CO2排放的影响;生物炭稳定性及其对土壤CO2排放的影响。本文基于以上三个方面综述了生物炭对农田土壤CO2排放的影响,并在此基础上对生物炭的固碳减排效应进行展望,以期为生物炭的合理施用、农田固碳减排等提供基础和参考。  相似文献   

20.
Several management practices are available to conserve and sequester C in the agricultural sector of the former Soviet Union (FSU). The highest rate of C accumulation would result from the implementation of a no-till management option which will only continue during the first ten years until new C equilibrium is reached. Agroforestry management options provide a longer period for C accumulation, but at a lower rate. It is possible that the longest period of C conservation may be achieved by increasing the area under perennial grasses in the crop rotation. During the first decade of implementation of the management practices, the amount of C conserved or sequestered would be approximately equal to the current rate of net C sequestration in FSU forest sector. At present, agricultural soils and vegetation of the FSU store approximately 120 Pg C; the accumulation of soil organic matter is 0.032 Pg C yr-1. The annual C loss in the FSU agricultural sector was estimated at 0.21 Pg C yr-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号