首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
利用2017年嘉善善西超级站臭氧(O3)及其前体物(NOx和VOCs)以及气象因子(温度、湿度、风速)逐小时数据,分析了2017年全年NOx和O3的变化特征以及春季(4—5月)、夏季(7—8月)NOx和气象因子对O3生成的影响,利用O3生成潜势(OFP)评估了VOCs大气化学反应活性,并通过潜在源区贡献(PSCF)和浓度权重轨迹(CWT)方法分析了嘉善春、夏季O3潜在源区贡献特征。研究发现:O3日变化特征为单峰结构,NOx为弱双峰结构。O3浓度在3—9月较高,春、夏季O3浓度峰值分别出现在15:00和14:00,春、夏季的NOx、O3日变化与2017年全年日变化趋势基本一致。NOx对O3存在滴定作用,且低湿高温有利于O3浓度的升高。春、夏季O3生成潜势贡献均表现为烯烃 > 芳香烃 > 烷烃,由于烯烃光化学活性较高,夏季烯烃浓度升高导致其贡献较春季增长约18.1个百分点,且夏季VOCs平均最大O3增量反应活性高于春季。PSCF和CWT分析结果表明,嘉善春季的潜在源区主要为本地、西南方向和东南方向,夏季的潜在源区主要为本地、西北方向、西南方向以及东南方向。  相似文献   

2.
利用滁州市环境空气质量监测数据和气象观测数据,分析了滁州市O3污染基本特征,并着重分析了一次连续O3污染过程中气象因素、VOCs以及其他污染物对于O3浓度的影响。结果表明:滁州市环境空气污染类型正由"PM2.5型"向"PM2.5和O3混合型"转变,O3污染程度呈现加重趋势,污染持续时间有所拉长。9月4—9日一次连续O3污染过程中O3呈单峰状;受到光化学生成和区域传输共同影响,峰值时气温大多在30℃以上,相对湿度较小,风速大多处于小风区(WS≤1 m/s),也有部分处于风速较大区域(WS>3 m/s);VOCs/NOx比值法和O3/NOx比值法均反映此次连续O3污染为VOCs控制;体积分数较大的VOCs物种主要为烷烃,其中单个体积分数最大的物种是乙烷;烯烃是对O3生成贡献最大的关键活性组分,对O3生成潜势的贡献为53.5%,控制1-戊烯、反2-戊烯、异戊二烯、间/对二甲苯等物种可以有效控制光化学生成对此次O3污染过程的影响。  相似文献   

3.
基于湖南省2015—2020年夏秋季的污染物及气象观测数据,分析了臭氧(O3)污染的时空特征和生成敏感性。湖南省中部和北部的O3污染较为严重,且主要发生在9月,午后O3峰值常与早高峰的NO2浓度有较高的相关性。采用转置EKMA曲线方法探究了O3在NO2维度和VOCs反应活性维度下的生成敏感性。在 NO2维度下,NO2控制区和NO2-VOCs过渡区的NO2质量浓度为7 ~ 13 μg/m3,NO2-VOCs过渡区和VOCs控制区的NO2质量浓度为15~17 μg/m3。在VOCs反应活性维度下,当NO2质量浓度大于10 μg/m3时,VOCs反应活性越高,O3浓度越高。在高VOCs反应活性(30 ℃或以上)时,NO2浓度每降低1 μg/m3,各区域的O3质量浓度能降低约8 ~ 9 μg/m3。结合NO2 和VOCs反应活性2个维度,得出湖南省午后O3生成以 NO2控制区和NO2-VOCs 过渡区为主,在晴天干燥和高温条件下,减排NO2可有效降低O3浓度。转置EKMA曲线方法为缺少长期VOCs观测的区域提供了研究O3生成敏感性的新思路。  相似文献   

4.
珠三角地区臭氧(O3)已经逐步取代颗粒物成为主要大气污染物。对新型冠状病毒肺炎(COVID-19)疫情封闭期间珠三角城市背景污染效应(特别是对O3的放大效应)进行了量化研究,发现PM2.5和NO2质量浓度均为工作日高于节假日,非疫情期高于疫情期。O3质量浓度节假日高于工作日,其中疫情期节假日浓度最高。减排会增加低温高湿背景下O3质量浓度,但会降低其极大值,并导致 O3随温度和相对湿度的变化梯度减弱。疫情封闭期间异地输送对于局地O3质量浓度的变化贡献突出。叠加疫情封闭影响的春节假期O3质量浓度比节前工作日增加20.4%~41.7%,与一般年份特征相反,而NO2降低65.3%~75.6%,降低程度强于一般年份。疫情封闭期春节期间O3质量浓度比一般年份上升14.0%~25.9%,而NO2质量浓度降低37.0%~54.5%。低湿晴好的天气为光化学反应提供有利条件,并且疫情封闭扩大了假期人为源减排规模,导致NOx质量浓度进一步下降,使其对O3的滴定效应减弱,同时静稳天气有利于O3浓度的累积,导致局地O3污染被逐步放大。  相似文献   

5.
千岛湖地区是我国重要的自然保护区,属于典型生态功能区。当前,臭氧(O3)正频繁成为影响千岛湖地区空气质量的首要污染物,但对于与此相关的千岛湖地区O3生成敏感性,研究人员目前仍未了解清楚。利用2019—2021年TROPOMI卫星观测数据,运用O3生成敏感性指示剂方法,即甲醛对流层垂直柱浓度和二氧化氮对流层垂直柱浓度的比值(FNR),量化解析了千岛湖地区O3生成敏感区的时空演化特征。结果表明,千岛湖地区FNR呈现逐年升高趋势,且显著高于杭州市主城区。千岛湖地区氮氧化物(NOx)控制区逐年扩张,自2019年开始,由西南向东北逐步蔓延。截至2021年,NOx控制区已基本覆盖整个千岛湖地区。千岛湖地区O3生成敏感区在夏季基本属于NOx控制区,在其他季节属于NOx控制区或协同控制区。结合气象再分析数据发现,FNR与温度呈强正相关(r=0.8),与相对湿度呈较弱正相关,与风速和云液态水含量呈较弱负相关。当温度大于7.0 ℃、风速小于6.2 m/s、云液态水含量小于5.5×10-5 g/m3、相对湿度大于57.5%时,O3生成趋向于受NOx控制。此外,与杭州市相比,千岛湖地区O3生成对气象参数变化更为敏感。研究成果对我国典型生态功能区O3污染防控具有重要的启示作用。  相似文献   

6.
对南通市区2022年4月初因疫情防控采取全区域静态管理期间的空气质量进行分析,以气象参数、臭氧前体物VOCs和NOx作为分析对象。结果表明:此次污染过程的主导因素是高温、强辐射、低湿和偏南风的气象条件。南通市区处于VOCs控制区,高温、强辐射使得VOCs挥发性增强,浓度升高。偏南方向的苏通园区和能达公园VOCs浓度较高且升幅较大,源解析结果表明这2个点位涂料溶剂使用占比升幅更高,既容易受附近石化和储油库影响,也容易受偏南风向的污染输送影响。据初步统计,静态管理期间南通市区停工数量为80%左右,污染期间NO2浓度高值区主要分布在沿江一带,长江南岸的张家港和常熟地区存在多家高排放企业,在偏南风下,张家港和常熟的污染物极易输送至南通市区。基于空气质量模型WRF-CAMx的O3和PM2.5来源解析结果显示,静态管理期间外来输送明显,占比为68.7%~84.7%。污染期间的船舶排放和二次转化贡献也不容忽视。建议南通市应重点加强工业、油气挥发和涂料溶剂源减排,同时加强区域联防联控,以便进一步改善空气质量。  相似文献   

7.
环境空气质量新标准对珠三角区域站空气质量评价的影响   总被引:4,自引:4,他引:0  
利用粤港珠三角区域空气质量监控网中天湖、金果湾与万顷沙3个区域站2010年全年SO2、NO2、PM10、O3、PM2.5与CO自动监测的数据,分析了实施环境空气质量新标准(GB 3095—2012)对这3个子站空气质量评价的影响。研究发现,若采用新标准,万顷沙的NO2、PM10和PM2.5年均浓度将不同程度超标。这3个子站空气质量达标率下降7~28个百分点,空气污染指数从91%~99%下降至63%~91%;O3的引入是导致空气质量达标率下降的最主要的原因;O3将取代PM10成为最主要的首要污染物,出现频率大于50%,且O3(8 h)平均浓度的影响大于O3 (1 h)浓度的影响。PM2.5的纳入也是导致空气质量达标率下降的重要因素,其超标率为3%(金果湾)~16%(万顷沙)。NO2标准的收严未对天湖与金果湾空气质量评价造成影响,但导致万顷沙NO2的超标率从2%上升至10%,且NO2作为首要污染物的比例达24%。  相似文献   

8.
后藏地区典型城市日喀则市和黄河三角洲典型城市东营市的大气首要污染物在2019年5—9月均为臭氧(O3)。虽然日喀则市O3超标天数少,但其年平均浓度高于东营市。两地地理气候、产业结构差异巨大,但O3年均浓度非常接近。对日喀则市和东营市的O3污染特征进行分析,并探讨O3污染的影响因素。结果表明:后藏地区紫外辐射强烈,大气环境中O3的本底浓度值较高;与东营市相比,日喀则市春季O3浓度最高,全年最高值出现在5月,比东营市早1个月。NO2对日喀则市O3的生成影响有限,对东营市O3的生成影响明显;PM2.5对日喀则市O3的生成影响较小,对东营市O3的生成影响较明显;CO对日喀则市和东营市O3的生成均有一定影响。超低湿度和长时间日照的气象环境有利于日喀则市O3浓度的上升,高温、60%~70%的相对湿度和长时间日照的气象环境有利于东营市O3浓度的上升。  相似文献   

9.
基于2022年1—12月青岛市沿海区域臭氧(O3)自动监测数据和气象观测资料,对O3污染变化特征及影响因素进行了分析,结合后向轨迹聚类与潜在源区分析等方法,对O3外来输送通道及潜在源分布情况进行分析研究。结果表明:青岛市沿海区域O3污染主要集中在4—10月份,日变化特征呈单峰单谷趋势,峰值出现在15:00—16:00;气象因素中,地面短波辐射对O3浓度变化的相对贡献最大,偏南风易导致O3污染;受二氧化氮(NO2)滴定作用以及海陆风转换影响,沿海区域O3峰值与谷值均滞后青岛城区1 h左右;O3生成整体处于VOCs控制区,1-丁烯、正丁烷与异戊烷是O3污染期间导致O3浓度上升的关键组分;O3污染的主要潜在源区为长三角北部和黄海近岸海域,以及山东中南部地区。  相似文献   

10.
利用数值天气预报模式和嵌套网格空气质量预报系统的来源解析模块(WRF NAQPMS/OSAM)对中山市2019年9月1次臭氧(O3)污染过程进行了模拟分析,并对O3来源进行了解析。结果表明,WRF-NAQPMS/OSAM模型能较好地模拟出该时段的O3浓度。此次污染过程区域传输对中山市O3浓度贡献显著,平均贡献比例为82.9%,本地平均贡献比例为17.1%,对中山市O3贡献最大的2个来源分别是溶剂源和交通源,平均贡献占比分别为43.0%和42.7%。另外,工业源的贡献也不可忽略,平均贡献占比为11.0%。中山市O3总体上处于挥发性有机物(VOCs)控制区,结合臭氧生成潜势(OFP)分析和源解析结果,溶剂源、交通源和工业源排放的甲苯、间/对二甲苯、邻二甲苯、1,2,3-三甲苯、正丁烷和异戊烷对O3形成贡献显著,是中山市O3污染治理应注意的重要前体物。建议中山市建立以VOCs控制为主导,VOCs和氮氧化物(NOX)协同控制的长期O3防控策略。  相似文献   

11.
上海市臭氧污染时空分布及影响因素   总被引:1,自引:0,他引:1  
分析2006—2016年上海市的监测数据发现,臭氧(O_3)浓度存在逐年上升趋势,污染持续时间有所增加,但除水平风速有下降趋势外,其他相关气象因素的年际变化趋势并不显著。空间分析结果表明,上海市O_3超标主要集中在西南部郊区,但市区O_3超标潜势不容忽视。O_3污染高发季节的污染玫瑰图分析发现,上海市南部地区是影响上海市O_3污染的关键区域;对于NO_2减排的影响分析发现,尽管上海市O_3平均浓度总体处于上升趋势,但在NO_2下降幅度最为明显的内环市区和北部郊区,O_3上升幅度低于NO_2下降幅度较小的内外环区域和西部郊区,表明上海市的O_3污染控制仍需持续推进NOx的减排,并同步推进VOCs的减排。  相似文献   

12.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

13.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

14.
重点对河北省辛集市"十三五"期间整体空气质量变化情况以及影响辛集市优良天数的2个重要参数O3和PM2.5的污染规律进行了分析。结果表明,辛集市"十三五"期间空气质量改善明显,优良天数整体增加,污染天数整体减少。O3浓度及其作为首要污染物出现的天数整体呈现上升趋势,对综合指数的贡献率逐年增加;O3污染高发期主要集中在4—9月,高值区域分布差距较大,但市区污染持续突出。PM2.5浓度逐年下降,以PM2.5为首要污染物的天数逐年减少;PM2.5浓度季节变化特征整体呈现"秋冬高、春夏低"的分布特点,空间分布呈"南北高、中间低"的污染特征。  相似文献   

15.
利用2018—2021年安徽省空气质量监测数据分析了PM2.5和O3时空分布特征及其引发的健康风险。结果表明:从时间分布来看,2018—2021年安徽省PM2.5年均值下降25.5%,而O3-8 h年均值则保持持平;PM2.5和O3-8 h月均值具有明显的季节变化特征,PM2.5月均质量浓度和超标天数均在冬季达到最大值,O3-8 h月均值和超标天数则在夏季达到最大值。从空间分布来看,PM2.5、O3-8 h年均值和超标天数均为皖北最高,其次为皖中,最后为皖南。夏季O3是主要的健康风险因子,冬季PM2.5是主要的健康风险因子。当PM2.5超标时,除2021年皖北地区外(PM10是主要的健康风险因子),PM2.5均是主要的健康风险因子;当O3-8 h超标时,O3是主要的健康风险因子。  相似文献   

16.
利用山西省11个地级市大气环境监测站的PM2.5、PM10和O3浓度数据,分析了2015—2020年山西省PM2.5、PM10和O3浓度时空变化特征,采用空间计量模型和岭回归方法,分析了空气污染对公众健康的空间影响。结果表明:PM2.5和PM10年均质量浓度总体下降,两者在2017年最高,2020年最低;O3年均浓度总体增加。在季节尺度上,PM2.5和PM10质量浓度在冬季的12月和1月最高,夏季的8月最低;O3浓度在6月最高。空间上,相较2015年,2020年山西省各地级市PM2.5污染程度均有改善,其中长治改善效果最好;2020年山西各地级市PM10污染兼有加重和减轻的情形,所有地级市PM2.5和PM10污染水平均超过国家二级污染浓度限值;2020年山西多数地级市O3浓度升高。山西公众健康水平具有明显的空间离散特征,PM2.5和PM10浓度的局部空间自相关特征高度一致,呈现"南高北低"的格局,O3浓度分布呈"南部高,中北部低"的格局。大气环境质量和经济发展水平均对医疗机构诊疗人数和健康体检人数的变化有正向影响,每万人卫生技术人员数量和公共财政支出比例对公众健康均有负向影响,其中经济发展水平和大气环境质量的影响最显著。山西省PM2.5治理取得一定成效,但大部分城市PM2.5和PM10达标率较低,O3浓度有持续升高的趋势,PM10和O3污染改善缓慢,深度减排仍面临挑战。PM2.5和PM10是危害山西公众健康的主要大气污染物,未来需要加强PM2.5、PM10和O3的精细化管理及协同治理。  相似文献   

17.
基于Aura卫星臭氧监测仪(OMI)数据,分析了2011—2018年中国东部地区对流层NO2柱浓度的时空分布规律,以广泛而客观地验证NO2减排成效。结果表明:进入"十二五"以来,中国东部地区对流层NO2柱浓度快速下降,高值区域范围快速收缩甚至消失;华北平原、长江中下游平原污染相对严重,同时这些地区污染程度正在得到较快速的缓解;京津冀、长三角、珠三角是中国东部地区对流层NO2柱浓度相对最高、下降速度最快的典型区域;中国东部地区NO2减排取得的成效与产业转型升级、能源结构调整及严控移动源排放等政策措施密不可分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号