首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.  相似文献   

2.
The ability of herbicides to be adsorbed by the soil and sediment and their tendency to be desorbed are some of the most important factors affecting soil and water contamination. Therefore, a sorption study was conducted to evaluate the adsorption of cyhalofop-butyl, butyl (2R)-2-[4-(4-cyano-2-fluorophenoxy) phenoxy] propanoate, in the sandy clay loam and clayey soils using a batch equilibrium method. The adsorption of cyhalofop-butyl was found positively related with the clay and organic carbon content. Freundlich constants (K f) of cyhalofop-butyl in the clayey and sandy clay loam were found to be 13.39 and 2.21, respectively. Sorption coefficients (K oc) and distribution coefficients (K d) were found to be 265.38 and 2,092.79, and 1.38 and 11.48, for sandy clay loam and clayey soils, respectively. The adsorption isotherm suggested a relatively higher affinity of cyhalofop-butyl to the adsorption sites at low equilibrium concentrations. The low value of the soil organic carbon partition coefficient (K oc) of cyhalofop-butyl in the sandy loam soil suggested its weaker adsorption in soil and thus increased its risk of mobility into water sources; hence, it should be used judiciously to prevent groundwater contamination  相似文献   

3.
Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behaviour in natural systems. In particular, there is a lack of understanding of sorption of the oxidised Sb(V) species onto soils and soil phases. In this study sorption of Sb(V) by two organic rich soils with high levels of oxalate extractable Fe was examined over the pH range of 2.5-7. Furthermore, the sorption behaviour of Sb(V) was examined in two phases mimicking those dominant in the experimental soils, namely a solid humic acid and an amorphous Fe(OH)3, across the same pH range. Sorption of Sb by the soils and the humic acid fitted a Freundlich type isotherm, with the equation parameters reflecting changes in bonding affinity corresponding to pH changes. The soils sorbed >75% of the added Sb in all trials, and 80-100% at pH values less than approximately 6.5. The Fe(OH)3 retained >95% of the added Sb in all experiments. The humic acid sorbed up to 60% of the added Sb at acidic pH values, but sorption decreased to zero at higher pH values. Further adsorption studies are recommended, such as examining the effects of ion competition and changes in ionic strength.  相似文献   

4.
The movement and degradation of pesticide residues in soils and groundwater are complex processes affected by soil physical, (bio)chemical, and hydrogeological properties, climatic conditions, and agricultural practices. This work presents a physically-based analytical model suitable for long-term predictions of pesticide concentrations in groundwater. The primary interest is to investigate the impact of soil environment, related physical and (bio)chemical processes, especially, volatilization, crop uptake, and agricultural practices on long-term vulnerability of groundwater to contamination by pesticides. The soil is separated into root and intermediate vadose zones, each with uniform properties. Transport in each soil zone is modeled on the basis of complete mixing, by spatial averaging the related point multiphase-transport partial differential equation (i.e., linear-reservoir models). Transport in the aquifer, however, is modeled by a two-dimensional advection-dispersion transport equation, considering adsorption and first-order decay rate. Vaporization in the soil is accounted for by assuming liquid-vapor phase partitioning using Henry's law, and vapor flux (volatilization) from the soil surface is modeled by diffusion through an air boundary layer. Sorption of liquid-phase solutes by crops is described by a linear relationship which is valid for first-order (passive) crop uptake. The model is applied to five pesticides (atrazine, bromacil, chlordane, heptachlor, and lindane), and the potential for pesticide contamination of groundwater is investigated for sandy and clayey soils. Simulation results show that groundwater contamination can be substantially reduced for clayey soil environments, where bio(chemical) degradation and volatilization are most efficient as natural loss pathways for the pesticides. Also, uptake by cross can be a significant mechanism for attenuating exposure levels in ground-water especially in a sandy soil environment, and for relatively persisting pesticides. Further, simulations indicate that changing agricultural practices can have a profound effect on vulnerability of groundwater to mobile and relatively persisting pesticides.  相似文献   

5.
The effect of two fly ashes as soil amendment on the adsorption–desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K f) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils?+?fly ash mixtures than the metolachlor. The K f values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R?>?0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.  相似文献   

6.
Soil contamination by metals engenders important environmental and health problems in northern France where a smelter (Metaleurop Nord) was in activity for more than a century. This study aims to look at the long-term effects of the smelter after its closedown by combining data on the degree of soil contamination and the quality of the crops grown (agricultural crops and homegrown vegetables) in these soils for a better assessment of the local population’s exposure to Cd, Pb, and Zn. Seven years after the Metaleurop Nord closedown, (1) the agricultural and urban topsoils were strongly contaminated by Cd, Pb, and Zn; (2) the kitchen garden topsoils were even more polluted than the agricultural soils, with great variability in metal concentrations within the gardens studied; (3) a high proportion of the agricultural crops for foodstuffs did not conform with the European legislation; (4) for feedstuffs, most samples did not exceed the Cd and Pb legislation limits, indicating that feedstuffs may be an opportunity for most agricultural produce; and (5) a high proportion of the vegetables produced in the kitchen gardens did not conform with the European foodstuff legislation. The high contamination level of the soils studied continues to be a risk for the environment and the population’s health. A further investigation (part 2) assesses the associated potential health risk for local inhabitants through consumption of homegrown vegetables and ingestion of soil particles by estimating the site-specific human health assessment criteria for Cd and Pb.  相似文献   

7.
Pyraoxystrobin, (E)-2-(2-((3-(4-chlorophenyl)-1-methyl-1H-pyrazole-5-yloxy)methyl)phenyl)-3-methoxyacrylate, is a newly developed strobilurin fungicide with high antifungal efficiency. It has high potential to enter soil environments that might subsequently impact surface and groundwater. Therefore, 14C-labeled pyraoxystrobin was used as a tracer to study the adsorption/desorption and migration behavior of this compound under laboratory conditions in three typical agricultural soils. The adsorption isotherms conformed with the Freundlich equation. Single factor analysis showed that organic matter content was the most important factor influencing the adsorption. The highest adsorption level was measured in soil with low pH and high organic carbon content. Once adsorbed, only 2.54 to 6.41% of the adsorbed compound could be desorbed. In addition, the mobility results from thin-layer chromatography and column leaching studies showed that it might be safe to use pyraoxystrobin as a fungicide without causing groundwater pollution from both runoff and leaching, which might be attributed to its strong hydrophobicity. High organic matter content enhanced pyraoxystrobin adsorption and desorption because of the rule of similarity (lipid solubility). In the column leaching study, 95.02% (minimum value) of the applied 14C remained within the upper 4.0-cm layer after 60 days.  相似文献   

8.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

9.
A series of laboratory-based incubations using a stable isotope tracer technique was applied to measure the net and gross fluxes of CH(3)Cl and CH(3)Br as well as the net fluxes of CHCl(3) from surface soils of the Sacramento-San Joaquin Delta of California. Annually averaged flux measurements show that these mineral/oxidized peat soils are a net source of CH(3)Cl (140 ± 266 nmol m(-2) d(-1)) and CHCl(3) (258 ± 288 nmol m(-2) d(-1)), and a net sink of CH(3)Br (-2.3 ± 4.5 nmol m(-2) d(-1)). Gross CH(3)Cl and CH(3)Br fluxes are strongly influenced by both soil moisture and temperature: gross production rates of CH(3)Cl and CH(3)Br are linearly correlated with temperature, whereas gross consumption rates exhibit Gaussian relationships with maximum consumption at soil moisture levels between 20 and 30% volumetric water content (VWC) and a temperature range of 25 to 35 °C. Although soil moisture and soil temperature strongly affect consumption rates, the range of gross consumption rates overall is limited (-506 ± 176 nmol m(-2) d(-1) for CH(3)Cl and -12 ± 4 nmol m(-2) d(-1) for CH(3)Br) and is similar to rates reported in previous studies. CHCl(3) fluxes are not correlated with methyl halide fluxes, temperature, or soil moisture. The annual emission rates of CHCl(3) from the Sacramento-San Joaquin Delta are found to be a potentially significant local source of this compound.  相似文献   

10.
Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty–clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F?=?1.25) compared to pure metribuzin (K F?=?2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥2.8 for a DT50?≥?30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.  相似文献   

11.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

12.
选择上海地区广泛分布的水稻土,通过静态吸附平衡试验,比较土壤去除非晶质氧化铁和去除游离氧化铁后对Pb2+的吸附-解吸行为,采用数学模型拟合,探讨3种土壤的最佳拟合方程、最大吸附的理论值和亲和能力,进而研究非晶质氧化铁和游离氧化铁对Pb2+吸附-解吸的影响。结果表明,去除氧化铁后吸附能力和亲和能力均减弱,原土的最大吸附量为29.21 g/kg,非晶质氧化铁的贡献值为3.52 g/kg,游离氧化铁的贡献值为8.32 g/kg。  相似文献   

13.
In this study, coupled Pb concentration/Pb isotope data were used to evaluate the effect of a shooting range (operational for over 30 years) on Pb contamination of adjacent agricultural soils and the associated environmental risks. Lead was mainly concentrated in the arable layer of the contaminated agricultural soils at total concentrations ranging from 573 to 694 mg kg???1. Isotopic analyses (206Pb/207Pb) proved that Pb originated predominantly from the currently used pellets. Chemical fractionation analyses showed that Pb was mainly associated with the reducible fraction of the contaminated soil, which is in accordance with its predominant soil phases (PbO, PbCO3). The 0.05 M EDTA extraction showed that up to 62% of total Pb from the contaminated site is potentially mobilizable. Furthermore, Pb concentrations obtained from the synthetic precipitation leaching procedure extraction exceeded the regulatory limit set by the United States Environmental Protection Agency for drinking water. Ion exchange resin bags showed to be inefficient for determining the vertical distribution of free Pb2?+? throughout the soil profile. Increased Pb concentrations were found in the biomass of spring barley (Hordeum vulgare L.) sampled at the studied site and two possible pathways of Pb uptake have been identified: (1) through passive diffusion-driven uptake by roots and (2) especially through atmospheric deposition, which was also proved by analyses of a bioindicator species (bryophyte Hypnum cupressiforme Hedw.). This study showed that shooting ranges can present an important source of Pb contamination of agricultural soils located in their close vicinity.  相似文献   

14.
The adsorption equilibrium time and effects of pH and concentration of 14C-labeled paraquat (1,1??-dimethyl-4,4??-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of 14C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 ?? g g???1 (clay) at 1 ?? g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of 14C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 ?? g g???1, respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 ?? g g???1, respectively. Results also suggested that paraquat sorption by soil is concentration dependent.  相似文献   

15.
白银市土壤重金属污染源分析及防治措施   总被引:4,自引:1,他引:3  
通过对白银市土壤调查结果进行评价分析,发现东大沟土壤重金属污染较为严重。同时对土壤重金属污染来源进行讨论,认为大面积土壤重金属来源主要是农民节流灌溉所引起的,小范围的土壤污染可能由于固体废弃物(如铬渣等)的堆存造成。其他污染源对土壤造成的污染较轻,但长期的污染物积累也会造成很大的污染。在此基础上提出防治重金属污染的措施。  相似文献   

16.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

17.
Alluvial soils may represent important sinks of contaminants as a result of the deposition of contaminated sediments along the river by overbank flooding or after dredging. Because of the erosion of alluvial deposits or the release of contaminants from sediments, alluvial soils can also be a source of contamination. In this paper, a risk assessment for contaminated (alluvial) soils is presented. The approach, mainly based on physico-chemical soil characteristics, single extractions and leaching tests, is illustrated by means of a case study from four Belgian catchments. The extractions and leaching tests that were used have been validated by European testing programs and can provide valuable information for classifying the potential environmental risks of soils. Irrespective of the location, pH, organic carbon content and 'mobilisable' metal concentrations were the most important factors explaining 'mobile' metal concentrations in the alluvial soils. Additionally, the data of the physico-chemical soil characterization, extractions and leaching tests were combined with local and regional factors to classify the alluvial soils in different categories according to their actual and potential risk for the environment.  相似文献   

18.
城市土壤重金属污染研究现状与趋势   总被引:14,自引:7,他引:14  
阐述了城市土壤重金属的主要来源、空间分布特征、化学形态与影响因素,以及对人体的健康风险与生物效应,指出今后的研究重点与趋势是建立城市土壤重金属污染概念和标准体系,研究其在环境中的迁移转化机制与规律及城市土壤重金属复合污染,发展判源分析新技术.  相似文献   

19.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

20.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号