首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高频电晕放电等离子体法处理甲醛的研究   总被引:1,自引:1,他引:0  
采用高频电晕等离子体法进行去除甲醛气体的试验研究.主要考察了甲醛气体处理效果与电源频率和停留时间的关系,并进行了无填料、填加亚硝酸钠填料和钛酸钡填料对甲醛气体处理效果的对比试验.结果表明,高频电晕放电等离子体法可有效地实现对甲醛气体的去除.电源频率越高,停留时间越长,甲醛的去除效果越好;在相同条件下有填料填加对甲醛气体的去除效果优于无填料填加的去除效果;钛酸钡填料优于亚硝酸钠填料的去除效果;在电源频率为55 kHz、流量0.3 m3·h-1、进口浓度12 mg·m-3钛酸钡填料存在的条件下对甲醛的去除效率接近100%.  相似文献   

2.
一般性问题     
增加,NO的去除率逐步降低。图7参6X701’ZUUt洲J()Z,U低温等离子体技术及其治理工业废气的应用/侯健…(复旦大学)//上海环境科学/上海市环保局、.一1999,18(4)一151一153环图X一l(X) 利用低温等离子体技术对低浓度、高流速、大风量的含挥发性有机污染物和含硫类污染物等工业废气进行处理,实验室结果为介质阻挡放电产生的低温等离子体分解污染物效果好。在化纤厂对含硫工业废气做了实际应用的示范工程,中试装置已连续稳定运行l以X)h以上。图4表3参2X7012碗洲)(X刃294利用非平衡态等离子体降解甲苯研究/侯健…(复旦大学环境科学研究所)/…  相似文献   

3.
低温等离子污染物处理技术具有工艺简单、可协同控制多种污染物、占地面积小等特点,是目前在污染物控制技术领域的研究热点。主要介绍气体放电产生低温等离子体去除污染物过程中存在的O2、CO2气体对污染物去除效率的影响、NO x和SO2对Hg去除效率的影响和加入H2O、NH3、HCl对污染物去除效率的影响研究。  相似文献   

4.
X7印.12(X刀以又51线路板生产废气的治理/岑超平…(华南理工大学化工学院)//环境科学与技术/湖北省环科院一2(X)1,25(4)一抖一26环图X一21 通过实际工程设计参数的选择和运行条件的控制及试验研究,结果表明:采用填料吸收塔处理线路板生产废气是经济和有效的,以Na0H水溶液作吸收剂,经一级吸收处理废气中污染物去除卯%以上,排气浓度小于无组织排放限值,再加上以醋酸和表面活性剂的水溶液作为吸收剂作二级吸收,废气中有机成分苯、甲苯、二甲苯、甲醛及铅的去除率可达99 .7%以上,总运行费小于55元/万衬/h废气。表5X7印.312(X) 2()0452Hzq/Fe…  相似文献   

5.
等离子体联合纳米技术降解甲苯废气的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
以自制的纳米材料作为催化剂,利用低温等离子体联合纳米技术研究了不同电场强度、不同填料情况下的甲苯的降解,初步探讨了等离子体催化降解甲苯的机理,分析了降解产物.结果表明,甲苯降解率随电场强度的提高而上升;随反应器内填料变化[无填料(1),普通填料(2),镀有普通钛酸钡的介电填料(3)和镀有纳米催化剂的填料(4)],降解率( η)呈现为η (4)> η (3)> η (2)> η (1),最高可达95%.能量分配率(R)为R(1)>R(2)>R(3)>R(4).纳米钛酸钡基介电材料作为等离子体反应器内的填充材料,处理同量甲苯废气其消耗功率要低于填充其他填料的等离子体反应器.通过GC-MS 分析,中间产物包括醛、醇、酰胺及带有苯环的衍生物等有机物,但电场强度足够高时,甲苯分子最终可被氧化成CO2、CO 和H2O.  相似文献   

6.
一般性问题     
X701 9603341生物膜填料塔净化有机废气研究/孙琉石…(昆明理工大学环境工程及化学工程系)//中国环境科学/中国环境科学学会一1996,16(2)一92~95环信X一58 为在国内开展生物化学法净化低浓度有机废气的研究工作,采用国内现有微生物菌种挂膜接种的生物膜填料塔净化低浓度甲苯废气,结果表明,在入口气体甲苯浓度0.183~1.803mg/L及气体流量86.4~190.SL/h(停留时间6.2~13.65)的实验范围内,增加入口气体甲苯浓度和气体流量,可使甲苯的生化去除量增大,每升体积的生物膜填料对甲苯的生化去除量最大可达157.13mg/h。由实验结果推断,生物膜填料塔对…  相似文献   

7.
利用低温等离子体在降解污染过程中产生的副产物臭氧,开展了低温等离子体-臭氧催化氧化耦合工艺同时去除硫化氢和臭氧研究,考察了催化剂粒径、空床停留时间、催化反应温度、等离子体输入功率等工艺参数对硫化氢降解和副产物臭氧浓度的影响。研究发现:臭氧需求因子(Df)与催化床层出口的硫化氢与臭氧浓度之间有一定的对应关系,ln(Df)介于3~4时,尾气中硫化氢和臭氧的浓度可分别维持在5.0×10-6,3×10-6m3/m3以下;等离子体能量密度SIE/Cin与ln(Df)值成明显的正相关:ln(Df)=30.924SIE/Cin-3.5622。对于进气浓度(Cin)和气体流速(Q)皆已知的硫化氢废气,通过调控输入功率(P)来调控SIE使ln(Df)值在3~4,可使耦合工艺具有最佳的去除效果,实现硫化氢和臭氧最佳去除。  相似文献   

8.
X33200700856纳米TiO2对气相中甲醛光催化降解的研究/丁震(江苏省疾病预防控制中心)…∥环境科学研究/中国环科院.-2006,19(4).-74~79环图X-6采用溶胶-凝胶法制备了掺杂金属离子的纳米TiO2光催化剂,运用透射电镜和X射线衍射手段对催化剂的结构进行了表征,并将制备的光催化剂负载于不锈钢丝网、玻璃弹簧和泡沫镍板3种不同载体上,以室内空气典型污染物甲醛气体为模型反应物,研究了3种不同改性纳米TiO2光催化剂对甲醛气体的光催化作用,3种光催化反应器的催化效率以及环境因素对光催化效率的影响,同时考察了催化剂的失活特征.结果表明:该负…  相似文献   

9.
X332(X)l(X) 757臭氧一生物活性炭工艺去除水中有机微污染物/于秀娟(哈尔滨工业大学)…//环境污染与防治/浙江省环保局一200。,22(4)一l一3 环图X一3 在臭氧接触反应柱中填装陶粒填料,构成了臭氧一陶粒~生物活性炭饮用水深度净化流程,用该流程对去除水中有机微污染物进行了试验研究。结果表明,臭氧一陶粒~生物活性炭工艺充分发挥了臭氧的强氧化性、陶粒的辅助作用和生物活性炭的吸附过滤及生物降解作用,使cOD。去除率达到近40%,有机物由原来的58种减少到30种,潜在有毒有害物质减少到4种,表明该工艺是一种适宜的饮用水深度净化工艺。图2表…  相似文献   

10.
X32 200501398 城市大气污染物浓度预测方法研究/刘永…(北京大学环境学院)//安全与环境学报/北京理工大学.-2004,4(4).-60-62 环图X-142 X321.012 200501399 GIS和情景分析辅助的流域水污染控制规划/王少平(同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室)…//环境科学/中科院生态环境研究中心.-2004,25(4).-32-37  相似文献   

11.
X332田302麟7木质板材释放的甲醛对蚕豆根尖细胞微核的影响/王光学…(华中师范大学生命科学学院)//中国环境科学/中国环境科学学会一2(X)3,23(1)一38一41环图X一58 为了研究木质人造板材释放气体的遗传毒性,用木质人造材板释放的不同浓度的甲醛气体对蚕豆vicia faha根尖进行染毒,用显微镜观测根尖细胞的微核率,结果表明,蚕豆根尖细胞微核率与甲醛气体的浓度有良好的正相关性,经1 .24m岁时和3 .71m岁扩甲醛气体灌流染毒的细胞微核率与对照组之间具有显著性差异(P<0.01)。甲醛气体可以通过液相的吸收产生高浓度的蓄积,从而引起浸泡其中的根…  相似文献   

12.
在综述目前国内外净化甲醛有机废气方法的基础上 ,着重对生物膜填料塔净化甲醛有机废气进行了研究。初步实验研究结果表明 ,在入口气体甲醛浓度为 5~2 5mg/m3、气体流量为 0 .1 0~ 0 .6 0 m3/h、循环液体喷淋量为 1 0~ 4 0 L /h的实验范围内 ,生物膜填料塔对气体中甲醛的净化效率可达到 75%左右。这表明采用国内现有微生物菌种挂膜的生物膜填料塔净化有机废气是可行的。  相似文献   

13.
利用强电离放电方法将气体中大部分O2、N2、H2O等气体分子电离后加工成高浓度的羟基(OH#B)自由基,在120℃、不用外加催化剂、吸收剂条件下,在等离子体反应器内将SO2直接氧化成H2SO4雾,再用电收雾器加以回收。实验数据表明气体中SO2原始浓度、含水量以及折合电场强度等因素对脱硫率的影响很大。在SO2原始浓度为792×10-6(v/v),流量为0.1m3/h,含水量为3.6%(v/v),折合电场强度为370Td时,SO2脱除率达到了100%。  相似文献   

14.
周炜煌 《环境科技》2009,22(4):28-33
生物滴滤塔处理舍NH3与H2S臭气最佳的生态条件为:在温度为25℃、营养盐喷淋量为8.0L/h、气体通气量为0.4m^3/h,NH3进气质量浓度为435.74~802.32mg/m^3 H2S进气质量浓度为723.44~952.18mg/m^3,pH值在7.0—8.0之间的条件下.去除效率可达90%以上。填料高度与气体的净化效率存在一定的关系,H2S进气质量浓度在670.20—960.88mg/m^3时.下层填料净化效率可达50%~60%;下、中两层填料的净化效率则可达90%以上,在下半部分填料层就能去除大部分气体污染物。  相似文献   

15.
X33200703598臭氧氧化水中壬基酚的反应机理研究/胡翔(北京化工大学化学工程学院环境工程系)…∥环境科学/中科院生态环境研究中心.-2007,28(3).-584~587环图X-5采用臭氧氧化浓度为20mg/L的壬基酚溶液,研究了臭氧氧化去除壬基酚的效果及氧化过程中中间产物的变化情况,探讨了臭氧氧化壬基酚的反应机理.结果表明,臭氧氧化涉及2种氧化方式,臭氧分子的单独反应和臭氧/羟基自由基的联合氧化.2种氧化方式在18min内均能完全去除壬基酚,联合氧化方式在4min内即能达到96%的去除率,而单独臭氧分子氧化需要12min.氧化过程中检测到甲醛的产生,单独臭氧…  相似文献   

16.
阐述了低温等离子体协同催化工艺流程与反应机理,探讨了反应温度、废气进口组分、废气中水蒸气含量、气体流速、气溶胶等因素对降解效果的影响。分析认为:一段式低温等离子体协同催化可改变低温等离子体特征及催化剂催化特性,但尚未解决尾气臭氧逃逸、副产物产生及放电稳定性等问题;两段式低温等离子体协同催化可提高污染物分子降解效率并减少尾气臭氧逃逸,但未能有效利用等离子体的能量,气体中的水蒸气、粉尘及反应过程中产生的气溶胶均能影响后置催化剂的催化性能;两段式低温等离子体协同催化已具备工程应用条件,还需配套高效预处理单元以降低废气中水蒸气、粉尘等对催化剂的影响。  相似文献   

17.
工业企业生成的大量废气、废水对我国环境造成了严重污染,缓解方式为采用高效空气净化装置和污水处理装置。该文针对低温等离子体易产生副产物氮氧化物和臭氧,光催化对可见光响应弱、光量子利用效率低的缺点,设计了一种高效能的空气净化装置,以达到减少副产物排放,提高净化能效的目的。通过实验研究了单独低温等离子体、单独光催化及2种技术协同情况下对污染物甲醛去除效果的影响,并对比了三者作用时的降解率。实验结果表明,风管为九宫格形与风管为普通方形相比,有利于提高光催化去除甲醛的效率;2种技术协同后可有效提高污染物甲醛的去除效果,同时减少氮氧化物的排放,提高净化能效,并可将臭氧变废为宝用以工业废水处理。  相似文献   

18.
对脉冲电晕等离子体技术净化有机污染物甲苯进行了实验研究,考察脉冲峰值电压、脉冲频率、气体流量、气体入口质量浓度等因素对净化效率的影响.结果表明:甲苯去除率随脉冲峰值电压、脉冲频率增大而升高,随气体流量、气体进口质量浓度增大而降低;对低浓度、大流量的甲苯废气能达到较好的去除效果,最高去除率可达85.4%.  相似文献   

19.
X53200703654施加电压对铬污染土壤电动修复的影响/孟凡生…(中国环科院)∥环境工程学报/中科院生态环境研究中心.-2007,1(3).-111~115环图X-4试验研究了不同电压条件下电动修复去除效率和单位能耗随施加电压的变化关系,探讨了电动修复经济有效的电压范围.试验选用重铬酸钾作为污染物,配制高岭土中Cr(Ⅵ)初始质量分数为100mg/kg和500mg/kg,含水量为50%,试验运行48h,用乙酸控制阴极pH在4~7之间,施加一系列不同直流电压.试验结果表明,随着施加电压升高,去除效率增大,电压升高到1V/cm时,去除效率显著升高,2种试验土壤去除效率分别为76.7%和89…  相似文献   

20.
低温等离子体-生物法处理硫化氢气体研究   总被引:7,自引:4,他引:3  
采用低温等离子体-生物法处理硫化氢恶臭气体,硫化氢的去除效率比单独等离子体提高83.4%~90.1%,而且可消除等离子体氧化硫化氢产生的二氧化硫等二次污染物,将其转化为硫酸根和水.采用PCR-DGGE技术研究低温等离子体臭氧对处理硫化氢恶臭气体的生物滴滤塔内微生物群落结构变化规律.结果表明,低温等离子体臭氧影响生物滴滤塔内微生物群落结构,会导致一部分菌群消失,同时产生一些新的菌群;塔内微生物由8个菌种变为9个菌种,3个脱硫作用的硫杆菌菌群消失,出现4个分别具有脱硫作用和嗜酸性的新菌种,5个分别具有脱硫和硫酸盐还原菌种不变.低温等离子体-生物法系统生物滴滤塔内主要有硫杆菌属(Uncultured Thiobacillus sp.,Acidithiobacillus thiooxidans strain dfI,Uncultured Thiobacillus sp.,Uncultured Acidiphilium sp.),黄单胞菌属(Uncultured Xanthomonadaceae bacterium clone SBLE6C12),δ-变形菌(Unculturedδ-Proteobacterium)及副球菌属(Paracraurococcus sp.1PNM-27).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号