共查询到20条相似文献,搜索用时 15 毫秒
1.
A boiling model is developed by Computational Fluid Dynamics (CFD) code to calculate the source term of a cryogenic liquid spill. The model includes the effect of the changing ground temperature on the vaporization rate of the cryogenic liquid. Simulations are performed for liquid nitrogen. The model can describe different boiling regimes (film, transition and nucleate). The heat flux calculated for each boiling regimes are compared to the experimental data from literature. The developed numerical model seems to have a good ability to predict the heat flux for the film boiling stage. Model development is still necessary to improve the prediction of the nucleate boiling regime. Overall, the approach shows very promising results to model the complex physical phenomena involved in in the vaporization of cryogenic liquid pool spilled on ground. 相似文献
2.
The recent publication of evaluation protocols for vapor source term models and vapor dispersion models have influenced the modeling approaches that can be used for approval of new and expansion projects at LNG receiving terminals. In the past few years the scientific basis of integral vapor source term models has been questioned with growing concerns regarding their validity. In this paper, the shallow water equations (SWEs) were solved to study the characteristics of the evaporating LNG pool associated with a constant flow rate spill of LNG into a concrete sump. In the early stages of pool spreading, the leading edge thickness profile of the SWE model scales with the square root of the distance from the leading edge as the pool spreads. After the edge of the pool reaches the wall, the reflected wave forms a hydraulic jump that travels back towards the center of the pool at a speed that is considerably slower than the initial spreading of the pool. Once the hydraulic jump reaches the center, the pool assumes a nearly flat free surface for the rest of the spill. The pool spreading and the rate of evaporation from the SWEs were then compared to the solution provided by the integral model, PHAST. The two approaches were found to agree well with one another. The SWE model was also used to demonstrate the influence of an elevated spill source. With an elevated source, the LNG pool spreads faster, significantly increasing the initial rate of vaporization and peak vaporization rate. This increase in the initial rate of vaporization could lead to an increase in the vapor cloud hazard distance. The SWE model was also used to demonstrate the influence of an inclined sump floor in the shape of an inverted cone where the spilling LNG accumulates in the low vertex of the cone. Inclined sump floors can be used to significantly reduce the cumulative evaporation, making them attractive as a possible mitigation approach in cases where a containment sump is located close to a property boundary. 相似文献
3.
One of the LNG accident scenarios is the collision of an LNG carrier on an iceberg during marine transportation. A collision can result in damages to the vessel and lead to the leakage of the contents on ice or an ice-water mixture. When cryogenic liquid comes in contact with ice, it undergoes rapid vaporization due to the difference in temperature between the ice and cryogenic liquid. This process is different from the heat transfer between water and cryogenic liquid as ice is a solid and thus heat transfer to the pool occurs primarily through conduction. In this paper, the heat transfer phenomenon between ice and cryogenic liquid was studied through a small-scale experiment and the resulting vaporization mass fluxes were reported. The experiment involved six spills with varying amount of liquid nitrogen on different ice temperature to determine its effect on vaporization mass flux. The vaporization mass fluxes were determined by direct measurement of the mass loss during the experiment. The results indicated that the vaporization mass flux was a function of release rate and ice temperature. When the release rate and ice temperature was high, the vaporization mass flux follows a decreasing trend. With further reduction in release rate and ice temperature, the vaporization mass flux was found to be independent with time. The one dimensional conduction model was validated against experimental results. The predicted temperatures and heat flux were found to be in good agreement with the experimental data. 相似文献
4.
A high speed flow visualization experiment was conducted to characterize the boiling induced turbulence when a cryogenic liquid is released on water. The advective transport of turbulent structures traversing through the liquid was captured and reconstructed using image processing software to obtain information on velocity components. The numerical results obtained from image processing were used to determine turbulence parameters like turbulent intensity, turbulent kinetic energy and eddy dissipation rate. An interesting aspect of the study was the formation of wavy structures called ‘thermals’ which were characteristic of turbulent convection. The thermals were found to act as a catalyst in increasing heat transfer and turbulence between water and cryogenic pool. The turbulent intensity was influenced by the turbulent velocity and had direct effects on the vaporization flux. Among the turbulence parameters, increase in turbulent kinetic energy resulted in faster vaporization of cryogenic liquid through enhanced mixing, whereas variations in the eddy dissipation rate had weak dependence on vaporization. Additionally, the initial height of cryogenic liquid was also found to strongly affect the vaporization mass flux. 相似文献
5.
The authors have recently undertaken a major review of LNG consequence modeling, compiling a wide range of historical information with more recent experiments and modeling approaches in a book entitled “LNG Risk-Based Safety: Modeling and Consequence Analysis”. All the main consequence routes were reviewed – discharge, evaporation, pool and jet fire, vapor cloud explosions, rollover, and Rapid Phase Transitions (RPT’s). In the book, experimental data bases are assembled for tests on pool spread and evaporation, burn rates, dispersion, fire and radiation and effects on personnel and structures. The current paper presents selected highlights of interest: lessons learned from historical development and experience, comparison of predictions by various models, varying mechanisms for LNG spread of water, a modeling protocol to enable acceptance of newer models, and unresolved technical issues such as cascading failures, fire engulfment of a carrier, the circumstances for a possible LNG BLEVE, and accelerated evaporation by LNG penetration into water. 相似文献
6.
Ignition of natural gas (composed primarily of methane) is generally not considered to pose explosion hazards when in unconfined and low- or medium-congested areas, as most of the areas within LNG regasification facilities can typically be classified. However, as the degrees of confinement and/or congestion increase, the potential exists for the ignition of a methane cloud to result in damaging overpressures (as demonstrated by the recurring residential explosions due to natural gas leaks). Therefore, it is prudent to examine a proposed facility’s design to identify areas where vapor cloud explosions (VCEs) may cause damage, particularly if the damage may extend off site.An area of potential interest for VCEs is the dock, while an LNG carrier is being offloaded: the vessel hull provides one degree of confinement and the shoreline may provide another; some degree of congestion is provided by the dock and associated equipment.In this paper, the computational fluid dynamics (CFD) software FLACS is used to evaluate the consequences of the ignition of a flammable vapor cloud from an LNG spill during the LNG carrier offloading process. The simulations will demonstrate different approaches that can be taken to evaluate a vapor cloud explosion scenario in a partially confined and partially congested geometry. 相似文献
7.
The present study provides new measurements of the rate of evaporation of cryogenic liquids, liquefied natural gas (LNG) and liquid nitrogen (LN 2), floating on a water surface with different levels of turbulence intensity. The turbulent water surface is generated with an upward-pointing submerged jet with controlled jet velocity, an approach which has often been used in studies of free-surface turbulence. Direct measurements of the rate of evaporation were carried out for different pool thicknesses and turbulence intensities of the water surface. These tests reveal a strong dependence of the evaporation rate on the turbulence intensity, as well as a dependence on the thickness of the cryogenic liquid layer above the water surface. Models of LNG spills on water currently use a single rate of evaporation; these findings show that this approach is inadequate. Future models should incorporate the water turbulence intensity, and possibly the LNG spill thickness for improved accuracy. 相似文献
8.
In recent years, particular interest has been direct to the issues of risk associated with the storage, transport and use of Liquefied Natural Gas (LNG) due to the increasing consideration that it is receiving for energy applications. Consequently, a series of experimental and modeling studies to analyze the behavior of LNG have been carried out to collect an archive of evaporation, dispersion and combustion information, and several mathematical models have been developed to represent LNG dispersion in realistic environments and to design mitigation barriers.This work uses Computational Fluid Dynamics codes to model the dispersion of a dense gas in the atmosphere after accidental release. In particular, it will study the dispersion of LNG due to accidental breakages of a pipeline and it will analyze how it is possible to mitigate the dispersing cloud through walls and curtains of water vapor and air, also providing a criterion for the design of such curtains. 相似文献
9.
In chemical industry, sensors are used to monitor the leakage and emission of hazardous materials that are used for hazard warning and risk assessment to ensure safety production. The traditional sensor layout designs the scheme at single-layer, and thus causes large deviations in the estimated height and accuracy of source term estimation (STE). In this study, a dual-layer layout scheme for sensors is proposed. The numerical experiments verify that the improved schemes with an equal number of sensors, as well as detection errors, are beneficial to the accuracy of the STE results. The influence of the heights of the sensors and leak source on the results of STE is studied. Results show that the dual-layer sensor scheme with adjacent intervals at high places in the potential search space is highly favorable to locate the leak, and the scheme arranged near the ground is conducive for improving the estimation accuracy of source intensity. This study also compares the STE results of computational fluid dynamics (CFD) simulated scenarios under different sensor schemes and verifies the effectiveness of the proposed dual-layer sensor deployment scheme with adjacent intervals under turbulence condition. 相似文献
10.
The vaporisation of a liquid nitrogen pool spilled on concrete ground was investigated in small scale field experiments. The pool vaporisation rate and the heat transfer from the concrete ground were measured using a balance and a set of embedded heat flux sensors and thermocouples. The ability to predict the concrete's thermal properties based on these measurements was investigated. This work showed that a simple, one-dimensional theoretical model, assuming heat conduction through a semi-infinite ground with ideal contact between the cryogenic liquid and the ground, commonly used to describe the heat transfer from a ground to the LNG, can be used to match the observed vaporisation rate. Though estimated parameters, thermal conductivity and thermal diffusivity, do not necessary represent real values. Although the observed vaporization rate follows a linear trend, and thus can be well represented by the model, the overall model prediction seems to be overestimated. The temperature profile inside the concrete is slightly over-predicted at the beginning and under-predicted at later stage of the spill. This might be an effect of the dependence of the concrete's thermal properties on the temperature or may indicate an incorrect modelling and a varying temperature of the ground surface. 相似文献
11.
针对目前我国应对重大危险源突发事故的管理和决策主要依赖于相关领导或专家掌握的知识及经验的现状,将非结构化模糊决策方法(Non-structural Fuzzy Decision Method,NSFDM)和事故后果模拟方法相结合,以区域范围内受重大危险源潜在事故影响的企业为决策对象,以减小事故影响范围,降低事故严重程度为目标,建立起重大危险源区域事故应急决策的多准则决策方法,以期帮助安监职能部门优化配置应急救援资源,提高应急响应绩效,减少国家和人民的经济和财产损失.以广州市某公司丙烷储罐区为实例,在对其进行沸腾液体扩展蒸气爆炸(Boiling Liquid Expanding Vapor Explosion,BLEVE)事故模拟的基础上,运用非结构化模糊决策方法,对该丙烷储罐区BLEVE事故的处理,提供了应急决策支持. 相似文献
12.
This paper presents detailed data on the thermal response of two 500 gal ASME code propane tanks that were 25% engulfed in a hydrocarbon fire. These tests were done as part of an overall test programme to study thermal protection systems for propane-filled railway tank-cars. The fire was generated using an array of 25 liquid propane-fuelled burners. This provided a luminous fire that engulfed 25% of the tank surface on one side. The intent of these tests was to model a severe partially engulfing fire situation. The paper presents data on the tank wall and lading temperatures and tank internal pressure. In the first test the wind reduced the fire heating and resulted in a late failure of the tank at 46 min. This tank failed catastrophically with a powerful boiling liquid expanding vapour explosion (BLEVE). In the other test, the fire heating was very severe and steady and this tank failed very quickly in 8 min as a finite rupture with massive two-phase jet release. The reasons for these different outcomes are discussed. The different failures provide a range of realistic outcomes for the subject tank and fire condition. 相似文献
13.
Liquefied Natural Gas (LNG) storage facilities generally include channels to convey potential spills of the liquid to an impoundment. There is increasing concern that dispersion of vapors generated by flow of LNG in a channel may lead to higher than limit vapor concentrations for safety at site boundary from channels that may be close to the dike walls. This issue is of recent concern to regulatory agencies, because the calculation of vapor hazard distance(s) from LNG flow in a channel is not required under existing LNG facility siting standards or regulations.An important parameter that directly affects the calculated LNG vapor dispersion distance is the source strength (i.e., the rate of vaporization of LNG flow from the wetted channel surfaces, as a function of spatial position and time). In this paper a model is presented which considers the variation of the depth of the flowing LNG with spatial location and time, and calculates the spatial and temporal dependence of the mass rate of vapor generation. Self similar profiles for the spatial variation of the thermal boundary layer in the liquid wetted wall and liquid depth variation are assumed. The variation with time of the location of the liquid spread front and the evaporation rate are calculated for the case of a constant LNG spill rate into a rectangular channel. The effects of two different channel slopes are evaluated. Details of the results and their impact on dispersion distances are discussed. 相似文献
14.
As an effective way to construct and maintain various life pipelines in urban areas and industrial parks, the underground utility tunnel has been developed rapidly in China in recent years. However, the natural gas pipeline leakage in a utility tunnel may cause fire, explosion or other coupling disastrous accidents that could result in fatal consequences. The effective source term estimation (STE) of natural gas leakage can provide technical supports for emergency response during natural gas leakage accidents in utility tunnels. In this paper, a STE model with the combination of gas transport model, Bayesian inference and slice sampling method is proposed to estimate the source parameters of natural gas leakage in underground utility tunnels. The observed data can be integrated into the gas transport model and realize the inversion of natural gas leakage location and release rates. The parameter sensitivity analysis is presented to evaluate the robustness of the proposed model with good practicability, and the gas sensor layouts in the utility tunnel are analyzed and optimized. The spatio-temporal distribution of the leaked gas could be well predicted based on the estimation source parameters by the proposed STE model. The results show that the proposed model is an alternative and effective tool to provide technical supports for loss prevention and mitigation for natural gas leakage accidents in urban utility tunnels. 相似文献
15.
探讨英国健康安全委员会(HSE)推荐的危险设施周边发展规划建议(Planning Advice for Developments near Hazardous Installations,PADHI)的具体分析步骤,从个人风险角度对LNG储罐进行风险分析.通过LNG储罐案例分析PADHI方法的适用性,并给出LNG储罐周边土地的规划建议.案例分析表明,需搬迁或重新规划居民区C,而储罐周边的工业厂房、高速公路、居民区D的选址合理.研究表明,PADHI适用于工业危险源周边土地的规划,为解决重大危险设施周边土地规划等问题提供了参考,具有重要现实意义. 相似文献
16.
防护堤是LNG储罐区重要的安全措施之一,防护堤高度对于LNG的扩散行为具有显著影响。采用计算流体动力学(CFD)研究半地下LNG储罐区不同防护堤高度下的LNG液池和LNG蒸气云扩散行为,对比分析储罐区底面积和防护堤高度对LNG蒸气扩散距离和扩散速度影响。结果表明防护堤高度的增加可有效减小LNG蒸气云的0.5倍燃烧下限(LFL)扩散距离。因此,对于同一种半地下LNG储罐区,在液池充分扩展前,可燃气云最大扩散距离与储罐区底面积成正比,防护堤高度的增加可减小LNG可燃气云的扩散距离。研究结果可指导LNG加气站半地下LNG储罐区防护堤的设置。 相似文献
17.
Boilover is defined as a violent ejection of fuel due to the vaporization of a water sub-layer, resulting in an enormous fire enlargement and formation of fireball and ground fire. This paper focuses on the physical principles behind the thin-layer boilover phenomenon, and on the improvement of the thin-layer boilover modeling. Small scale field and laboratory experiments, with a mixture of diesel and oil, and reservoirs ranging from 0.08 to 0.3 m, have been performed. High-speed visualizations and image processing, in parallel to temperature and mass loss measurements allows to better understand the water boiling, and the consequent flame enlargement. The modeling of the boilover period is done through the calculation of the pre-boilover burnt mass ratio and the boilover intensity based on the mass loss and on the flame enlargement. 相似文献
18.
为了评价在开阔水面上的液化天然气(LNG)火灾和蒸气云爆炸灾害后果,分析了LNG水面扩展动态过程;对比分析了Fay模型、FERC模型和计算流体力学软件FLACS的计算结果,探讨了LNG液池面积随时间的动态变化过程,分析了泄漏量、泄漏速率等参数对LNG液池扩展半径的影响;根据液池扩展模型的计算结果,确定了LNG液池的最大面积,并以此分析了LNG流淌火灾的辐射危害。研究结果表明:对于相同的泄漏条件,3种方法模拟的泄漏LNG水面扩展动态过程相似,一般情况下,FLACS模型,FERC模型和Fay模型所计算的最大液池半径依次增大;由于FERC模型与FLACS软件的模拟结果接近且偏于保守,故此在一般的工程应用时,采用FERC模型即可方便快捷地获得较为准确的结果。 相似文献
19.
The methods used to evaluate the consequences of a vapor cloud explosion assume deflagrations within congested process pipework regions and consequently a significant effort has been invested in developing models to estimate the severity of these deflagrations. Models range from the simpler screening approaches to detailed Computational Fluid Dynamics. There is clear evidence from large scale experiments and incidents that transition from deflagration to detonation is credible and has occurred and it is the contention of this paper that deflagration is only the first stage in many major vapor cloud explosions and that detonation is readily foreseeable. Why does this matter? The methods currently used in the design and location of buildings on and around process sites are based on an incomplete picture of vapor cloud explosions. Whilst this might not have a significant effect in some cases, it is shown that there is the potential to significantly underestimate the explosion hazard. This will result in occupied buildings either being placed in the wrong location or under-designed for the explosion threat, increasing the risks to personnel on these sites. 相似文献
20.
针对工业LNG储罐泄漏问题,基于Fluent软件结合UDF修正风速模型,研究不同工况下泄漏发展情况,并对泄露口下风向沿直线距离上的泄漏气体浓度进行分析,得出准确气体扩散浓度范围.研究结果表明,泄漏孔口越接近地面,横向扩散距离越大.相同风速下,泄漏路径上气体浓度具有相似的变化趋势,风速越高泄漏气体沿扩散路径的稀释作用越强... 相似文献
|