首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accidental releases of toxic gas in the chemical plants have caused significant harm to the exposed occupants. To evaluate the consequences of these accidents, a dynamic approach considering the gas dispersion and behavior evacuation modelling has been proposed in this paper. This approach is applied to a hypothetical scenario including an accidental chlorine release in a chemical plant. CFD technique is utilized to calculate the time-varying concentration filed and evacuation modelling is used to obtain the evacuation routes. The exposure concentrations in the evacuation routes are calculated by using the code of data query. The integrated concentration toxic load model and probit model are used to calculate the probability of mortality of each occupant by using the exposure concentrations. Based on this dynamic approach, a new concept of average probability of mortality (APM) has been proposed to quantify the consequences of different accidental scenarios. The results show that APM decreases when the required detection time decreases or emergency evacuation mode is implemented. The impact of the detection time on APM becomes small as the wind speed increases. The effect of emergency evacuation mode is more obvious when the release occurs in an outdoor space.  相似文献   

2.
We present the results of a parametric sensitivity analysis of a widely used model for atmospheric dispersion of toxic gases, in order better to understand the influence of user-adjustable parameters on model outputs. We have studied 60 min continuous release scenarios for three different products (nitric oxide, ammonia and chlorine), chosen to cover a range of physical characteristics and storage conditions. For each product, we have broken down base-case scenarios into a number of sub-scenarios corresponding to different release conditions which determine physical phenomena (flow rate, release angle, release elevation and atmospheric stability class). The use of statistical tools to analyze the results of a large number of model executions allows us to rank model parameters according to their influence on the variability of a number of model outputs (distances and concentrations), on a per-scenario and per-product basis. Analysis of the results allows us to verify our understanding of the modeling of cloud dispersion.  相似文献   

3.
Computational fluid dynamic (CFD) simulations were performed to assess the potential chlorine leak scenario in the super-urban area of South Korea, where the human population density is very high and numerous buildings exist near operational water treatment facilities. Flame acceleration simulator (FLACS) was used to predict the consequence from accidental chlorine releases out of one of the water treatment facilities for the nearby area having a size of 5 km × 3 km approximately. The ability to precisely implement 3-D geometries is crucial for a successful 3-D simulation. Thus, a method was proposed to rapidly and accurately implement geometry by importing computer aided-design (CAD) files provided by a government agency, and processing them using Auto CAD and MicroStation software programs. An accidental release from an 18-ton tank was simulated with three different wind directions to determine the expected evacuation distances. Results from the study showed that the endpoint distances varied depending on the density and arrangement of the buildings. Moreover, we employed physical barriers with varying heights for mitigating the effects of toxic gas releases and simulated how effectively they decreased the concentration of released chlorine.  相似文献   

4.
基于CFD的毒气泄漏中毒定量评估   总被引:2,自引:2,他引:0  
针对有关毒气急性中毒研究只能根据经验公式和接触限值划定危险区域进行定性评估的现状,提出结合毒气泄漏CFD数值模拟与中毒剂量反应模犁进行中毒定量评估的方法.通过CFD计算泄漏毒气的实时浓度场,根据浓度场和暴露时间确定人员暴露剂量,最后根据剂量反应模型确定人员死亡百分比.以某硫黄回收装置的硫化氢泄漏为例,建立CFD模型.设置距地面高1.5 m,与泄漏源水平距离分别为100 m、200 m、300 m、400 m、500 m的5个监测点作为工作人员的急性中毒地点.模拟分为构建初始风场、硫化氢泄漏及随风场扩散3个阶段,根据CFD求解得出的监测点的硫化氢实时浓度场并结合中毒剂量反应模型对监测点人员中毒死亡风险进行定量评估.研究表明,基于CFD的毒气泄漏中毒定量评估技术能对泄漏区域任意位置、任意时刻的人员中毒风险进行定耸评估,弥补了目前大多定性评价方法的不足.  相似文献   

5.
障碍物地形条件下重气泄漏扩散实验的CFD模拟验证   总被引:5,自引:2,他引:3  
重气泄漏扩散是一种危害性较大的多发事故,而一旦在人口密集区域发生泄漏事故,周围居民将处境危险。重气泄漏后一般沿地面扩散,而地形条件是影响其扩散行为的重要因素。本文利用计算流体力学方法(CFD)对Thorney Island Trial026实验条件进行了数值模拟,考察障碍物对气体扩散的影响并与实验结果进行对比。结果表明,模拟结果与实验数据的吻合性较好,证明CFD软件能够较准确地模拟障碍物地形条件下的重气扩散过程。  相似文献   

6.
Toxic gas-containing flammable gas leak can lead to poisoning accidents as well as explosion accidents once the ignition source appears. Many attempts have been made to evaluate and mitigate the adverse effects of these accidents. All these efforts are instructive and valuable for risk assessment and risk management towards the poisoning effect and explosion effect. However, these analyses assessed the poisoning effect and explosion effect separately, ignoring that these two kinds of hazard effects may happen simultaneously. Accordingly, an integrated methodology is proposed to evaluate the consequences of toxic gas-containing flammable gas leakage and explosion accident, in which a risk-based concept and the grid-based concept are adopted to combine the effects. The approach is applied to a hypothetical accident scenario concerning an H2S-containing natural gas leakage and explosion accident on an offshore platform. The dispersion behavior and accumulation characteristics of released gas as well as the subsequent vapor cloud explosion (VCE) are modeled by Computational Fluid Dynamics (CFD) code Flame Acceleration Simulator (FLACS). This approach is concise and efficient for practical engineering applications. And it helps to develop safety measures and improve the emergency response plan.  相似文献   

7.
The rapidly growing capacity and scale of the world's petrochemical industries have forced many plants to have an even larger amount of hazardous substances. Once a serious leak occurs, the outcome of the effect zone could be very large or even uncontrollable just like the Bhopal disaster. In order to assess the risk of a cross-regional damage, this study aims to develop a model that can combine the benefits of both CFD model of the microscale simulation and the Gaussian dispersion model of the mesoscale simulation.The developed integrated model is employed on a toxic chemical tank leak accident of a process plant within an industrial park in order to explore the consequences and the risk of the toxic gas dispersion on three different scopes; one is the accident site, the second is the long-distance transmission route of the mesoscale area and the third is a target city. According to the simulation's results, it is obvious that the complexity of the structure surrounding the leaking tank will eventually affect the maximum ground concentration, the cloud shapes and cloud dilution rate, while the released gas is under dispersion. On the other hand, since the simple Gaussian dispersion model doesn't consider the above impacts, its calculation results will have many differences as compared to the realistic situation. This integrated model can be used as a tool for estimating the risk on a microscale or mesoscale areas and it can produce better results when an environmental impact analysis is required for a larger hazardous chemical process.  相似文献   

8.
According to standard procedures, flammability and explosion parameters for dusts and dust mixtures are evaluated in 20 L and/or 1 m3 vessels, with equivalent results provided a correct ignition delay time (60 ms in the 20 L vessel; 600 ms in the 1 m3 vessel). In this work, CFD simulations of flow field and dust concentration distribution in the 1 m3 spherical vessel are performed, and the results compared to the data previously obtained for the 20 L. It has been found that in the 1 m3 vessel, the spatial distribution of the turbulent kinetic energy is lower and much more uniform. Concerning the dust distribution, as in the case of the 20 L, dust is mainly concentrated at the outer zones of the vortices generated inside the vessel. Furthermore, an incomplete feeding is attained, with most of the dust trapped in the perforated annular nozzle. Starting from the maps of dust concentration and turbulent kinetic energy, the deflagration index KSt is calculated in both vessels. In the conditions of the present work, the KSt is found to be 2.4 times higher in the 20 L than in the 1 m3 vessel.  相似文献   

9.
Incidental release of toxic chemicals can pose extreme danger to life in the vicinity. Therefore, it is crucial for emergency responders, plant operators, and safety professionals to have a fast and accurate prediction to evaluate possible toxic dispersion life-threatening consequences. In this work, a toxic chemical dispersion casualty database that contains 450 leak scenarios of 18 toxic chemicals is constructed to develop a machine learning based quantitative property-consequence relationship (QPCR) model to estimate the affected area caused by toxic chemical release within a certain death rate. The results show that the developed QPCR model can predict the toxic dispersion casualty range with root mean square error of maximum distance, minimum distance, and maximum width less than 0.2, 0.4, and 0.3, which indicates that the constructed model has satisfying accuracy in predicting toxic dispersion ranges under different lethal consequences. The model can be further expanded to accommodate more toxic chemicals and leaking scenarios.  相似文献   

10.
11.
The present study examined the accidental spill of ethylene oxide, and a sensitivity analysis of the corresponding consequences was conducted using computational fluid dynamics (CFD). A validation of the gas dispersion CFD model against the experimental data sets included in the model evaluation protocol (MEP) was performed. The effect of the variability of the wind velocity on the extension of the hazardous areas and pool evaporation characteristics was evaluated. Additionally, the mitigation effects of the dike walls surrounding a spill were discussed. CFD simulation results have shown that the mitigation effect of dike walls is determined by their influence on both gas dispersion and pool evaporation and depends strongly on wind velocity in terms of toxic impact distances.  相似文献   

12.
The paper describes the analysis of the potential effects of releases from compressed gaseous hydrogen systems on commercial vehicles in urban and tunnel environments using computational fluid dynamics (CFD). Comparative releases from compressed natural gas systems are also included in the analysis.

This study is restricted to typical non-articulated single deck city buses. Hydrogen releases are considered from storage systems with nominal working pressures of 20, 35 and 70 MPa, and a comparative natural gas release (20 MPa). The cases investigated are based on the assumptions that either fire causes a release via a thermally activated pressure relief device(s) (PRD) and that the released gas vents without immediately igniting, or that a PRD fails. Various release strategies were taken into account. For each configuration some worst-case scenarios are considered.

By far the most critical case investigated in the urban environment, is a rapid release of the entire hydrogen or natural gas storage system such as the simultaneous opening of all PRDs. If ignition occurs, the effects could be expected to be similar to the 1983 Stockholm hydrogen accident [Venetsanos, A. G., Huld, T., Adams, P., & Bartzis, J. G. (2003). Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. Journal of Hazardous Materials, A105, 1–25]. In the cases where the hydrogen release is restricted, for example, by venting through a single PRD, the effects are relatively minor and localised close to the area of the flammable cloud. With increasing hydrogen storage pressure, the maximum energy available in a flammable cloud after a release increases, as do the predicted overpressures resulting from combustion. Even in the relatively confined environment considered, the effects on the combustion regime are closer to what would be expected in a more open environment, i.e. a slow deflagration should be expected.

Among the cases studied the most severe one was a rapid release of the entire hydrogen (40 kg) or natural gas (168 kg) storage system within the confines of a tunnel. In this case there was minimal difference between a release from a 20 MPa natural gas system or a 20 MPa hydrogen system, however, a similar release from a 35 MPa hydrogen system was significantly more severe and particularly in terms of predicted overpressures. The present study has also highlighted that the ignition point significantly affects the combustion regime in confined environments. The results have indicated that critical cases in tunnels may tend towards a fast deflagration, or where there are turbulence generating features, e.g. multiple obstacles, there is the possibility that the combustion regime could progress to a detonation.

When comparing the urban and tunnel environments, a similar release of hydrogen is significantly more severe in a tunnel, and the energy available in the flammable cloud is greater and remains for a longer period in tunnels. When comparing hydrogen and natural gas releases, for the cases and environments investigated and within the limits of the assumptions, it appears that hydrogen requires different mitigation measures in order that the potential effects are similar to those of natural gas in case of an accident. With respect to a PRD opening strategy, hydrogen storage systems should be designed to avoid simultaneous opening of all PRD, and that for the consequences of the released energy to be mitigated, either the number of PRDs opening should be limited or their vents to atmosphere should be restricted (the latter point would require validation by a comprehensive risk assessment).  相似文献   


13.
Computational Fluid Dynamics (CFD) approach has been successfully applied to simulate the small-scale instantaneous flashing release experiment by Pettitt. A model for dispersion of the release event is provided based on relevant theories and existing experimental data. An application of the CFD method to the dispersion simulation is illustrated. Furthermore, a new methodology based on discrete phase model for setting computational initial conditions is provided. An initial expansion and subsequent turbulence dispersion can be characteristically identified from both volume and temperature variation of the cloud obtained by the simulation. The possible mechanism for these phenomena has also been discussed and analyzed. The study deepens the understanding of the physical process of this event and provides one more reliable tool for relevant safety systems.  相似文献   

14.
有毒重气在倾斜表面扩散的研究   总被引:4,自引:2,他引:4  
为了研究有毒重气泄漏后在平面和斜面上的扩散情况,根据Kunsch和Webber提出的重气在倾斜表面上的扩散模型,在没有考虑有风的情况下,对氯气气云在倾斜表面上的等温扩散进行了计算,得出了氯气气云扩散时间、扩散范围与浓度的相互关系,评估了氯气扩散的危害程度.对计算结果与平面盒子模型结果比较发现,氯气在不同角度的斜面上和平面上的扩散速度和浓度变化有着显著的差异.得到的氯气在不同倾斜角度坡面的扩散状况查询图,对评估倾斜表面的重气扩散具有一定的意义,并且能够为管理和应急工作提供依据.  相似文献   

15.
The numerical simulation of gas dispersion is of great importance in various areas of engineering such as optimisation, synthesis of chemical process, petroleum industry and process safety. The OpenFOAM (Open Field Operation and Manipulation) code is a free and open source computational fluid dynamics (CFD) program. The current research is focused on the development and customisation of a computational tool for handling gas dispersion of heavy gases, such a LNG and CO2. The novel CFD tool relies on OpenFOAM framework. The core of the work is based on the OpenFOAM solver rhoReactingBuoyantFoam to handle gas dispersion. A series of CFD simulations has been performed for methane and CO2. The source term of the former is modelled by HSM (Hybrid Switch Model). The model comprises contribution from HEM (Homogeneous Equilibrium Model) approach, frozen model and non-equilibrium model for CO2 leak. The novel approach switches between equilibrium and non-equilibrium conditions based on the meta-stable parameter on the grounds of thermodynamics and experimental observations. Good agreement with experimental data is observed. Numerical findings for methane leakage from the proposed CFD tool are compared with experimental data and FLACS. Good agreement is observed.  相似文献   

16.
The problem of toxic smoke in case of an accident with fire scenario is particularly severe in long tunnels and immediate effects from combustion product exposure often include fatalities. Notwithstanding extensive studies on fire simulation in tunnel, there is still a substantial lack of information on the different toxic products from combustion of light or heavy vehicles. In particular, there is a need for reliable test methods suitable to provide toxic products yields connected to defined accidental fire scenarios. In this paper, experimental runs in a laboratory scaled tunnel, simulating accidental fires of different heat release rates allowed firstly to characterize the thermal profiles in pool and car fires and to compare results by an analytical pool fire model. Results were compared as well with those obtained in a real scale tunnel, so as to quantitatively assess the scaling effect. A series of experiments was performed simulating an accidental scenario including pool fire from collision between a light vehicle and a HazMat heavy vehicle. An extensive set of experimental data allowed performing with good accuracy and reproducibility a complete characterization of toxic gases from car model fires, together with carbon monoxide and oxygen trends. The results obtained under different heat release rates allowed evidencing the dependence of the yields of toxic gases upon the considered scenario. Based on the intrinsic toxicity data of identified compounds, it is possible to draw practical conclusions, useful to assess the potential hazard associated to exposure to toxic smoke in road tunnel.  相似文献   

17.
针对火灾和材料燃烧中常见的有毒有害气体,选取低浓度的CO、CO2、NO、NO2、SO2、HCl、HBr、HCN八种典型气体同时进行定量分析。基于傅里叶变换红外光谱技术(FTIR),设计可靠实验系统和实验过程控制,准确得到气体的光谱数据。通过合理去除干扰光谱区间、筛选样本、选择模型参数等,建立BP-PLS回归模型,并对未知样本进行预测,各组分的校正误差均方根RMSEC达到4×10-6以下,预测可决系数R2均达到0.95以上。通过将PLS-BP模型与经典的线性模型经典最小二乘(CLS)和偏最小二乘(PLS)进行比较,PLS-BP模型在非线性拟合能力和预测性能两方面明显高于经典线性模型CLS和PLS。  相似文献   

18.
In recent years, significant progress has been made to ensure that process industries are among the safest workplaces in the world. However, with the increasing complexity of existing technologies and new problems brought about by emerging technologies, a strong need still exists to study the fundamentals of process safety and predict possible scenarios. This is attained by conducting the corresponding consequence modeling and risk assessments. As a result of the continuous advancement of Computational Fluid Dynamics (CFD) tools and exponentially increased computation capabilities along with better understandings of the underlying physics, CFD simulations have been applied widely in the areas of process safety and loss prevention to gain new insights, improve existing models, and assess new hazardous scenarios. In this review, 126 papers from 2010 to 2020 have been included in order to systematically categorize and summarize recent applications of CFD for fires, explosions, dispersions of flammable and toxic materials from accidental releases, incident investigations and reconstructions, and other areas of process safety. The advantages of CFD modeling are discussed and the future of CFD applications in this research area is outlined.  相似文献   

19.
为了研究特长公路隧道火灾情况下的应急方案,根据二郎山公路隧道的实际情况,提出了2种控烟方案,并结合不同火源功率,利用FDS对该隧道发生火灾后的温度场、压力场和烟气流动情况等进行了模拟.通过对模拟结果的分析,找到了一种适合于该隧道火灾情况下的控烟方案,即从隧道两侧平行导洞同时向内送新风,从而在平行导洞内形成正压,以便抑制火灾烟气进入平行导洞,为人员等的安全疏散提供便利.最后结合此控烟方式,本着行人与车辆单独疏散的原则提出了具体的火灾排烟和人车疏散方案.  相似文献   

20.
A three-dimensional CFD model was developed to simulate the turbulent flow field induced by dust feeding and the associated dust dispersion within the 20-L explosion vessel equipped with the perforated annular nozzle. The model was validated against experimental data for pressure and root mean square velocity.Simulation results have shown that the turbulent kinetic energy is rather uniformly distributed and its values are significantly lower than those attained with the rebound nozzle. Furthermore, the perforated annular nozzle is able to generate a uniform dust/air cloud. However, a consistent fraction of the dust remains trapped inside the nozzle and, thus, it does not contribute to the explosion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号