首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Substantive addition of antibiotic-contaminated manure to agricultural soil may lead to “persistent” residues of antibiotics and may affect soil health. Therefore, this study examines the effects of repeated manure treatments containing sulfadiazine (SDZ) and chlortetracycline (CTC) residues, both individually and combined, on the functional diversity and structure of soil microbial communities in the soils under laboratory conditions. The average well color development (AWCD), Simpson diversity index (1/D, dominant populations), Shannon-Wiener diversity index (H′, richness), and McIntosh diversity index (U, evenness) in the antibiotics-treated soils decreased in the first 60-day treatment and then gradually recovered or even exceeded the initial level in the unamended soils with increasing treatment frequency. A total of 11 specific bands in temperature gradient gel electrophoresis (TGGE) profiles were observed and sequence analyzed for five repeated treatments, and most of them belonged to the phyla Firmicutes, Actinobacteria, and Proteobacteria. These results indicate that repeated treatments of manure containing SDZ and CTC residues can alter soil microbial community structure, although they have a temporary suppression effect on soil microbial functional diversity.  相似文献   

2.
Kong W  Li C  Dolhi JM  Li S  He J  Qiao M 《Chemosphere》2012,87(5):542-548
Veterinary antibiotics are widely used for disease treatment, prevention and animal growth promoting. Frequent detection of veterinary antibiotics in environments, caused by land application of untreated or even treated antibiotics-containing animal wastes, has posed the growing concern of their adverse effect on natural ecosystems. Oxytetracycline (OTC) is one of the most widely-used veterinary antibiotics in livestock industry. OTC present as a cation, zwitterions, or net negatively charged ion in soils complicates predicting its sorption characteristics and potential bioavailability and toxicity. This study was to identify soil properties influencing OTC sorption and its subsequent bioavailability in five soils with various physical-chemical properties. A solution used to determine bioavailable analytes in soils and sediments, 1 M MgCl2 (pH 8.5), was chosen to desorb the potentially bioavailable fraction of OTC sorbed onto soils. Our results demonstrated that soils with higher illite content and permanent cation exchange capacity have higher OTC sorption capacity, but increase the availability of sorbed OTC indicated by higher release of sorbed OTC from soils into aqueous phase in 1 M MgCl2 (pH 8.5). Reversely, soil organic matter (SOM), clay, kaolinite, variable cation exchange capacity, DCB-Fe and -Al have lower OTC sorption capacity, but decrease the release of sorbed OTC from soils into 1 M MgCl2. These findings indicate that SOM and clay greatly influence OTC adsorption and potential availability. This study contributes significantly to our understanding of the potential bioavailability of sorbed OTC and the effects of soil properties on OTC sorption behaviors in soils.  相似文献   

3.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

4.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

5.
Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH4-N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.  相似文献   

6.
This study investigated soil microbial responses to the application of tetracycline (TC), sulfamonomethoxine (SMM), and ciprofloxacin (CIP) alone and in combination in a soil culture pot experiment conducted at Hangzhou, China. Multiple approaches were applied for a better and complete depiction. Among the three antibiotics, SMM has a lowest dissipation and shows a most dramatic inhibition on microbial community and metabolism diversity. The combined application (AM) of SMM, CIP, and TC improved the dissipation of each antibiotic; similarly, SMM- and CIP-resistant bacteria showed larger populations in the AM than all single applications. Soils accumulated a large content of NO3–N at day 20 after multi-antibiotics perturbation. All antibiotics stimulated soil basal respirations and inhibited soil metabolism diversity, whereas the interruption exerted by SMM and AM lasted for a longer time. Six nitrogen-cycling genes including chiA, amoA, nifH, nirK, nirS, and narG were quantified and found to decrease owing to both single- and multi-antibiotics perturbation. Overall, AM was most interruptive for soils, followed by SMM perturbation, while other antibiotics could be less interruptive. These results provide systematic insights into how soil microbial systems would shift under each single- or multi-antibiotics perturbation.  相似文献   

7.
Most veterinary drugs enter the environment via manure application. However, it is unclear how these substances interact with soil biota. Therefore, it was the aim of the present study to investigate the effects of manure containing different concentrations of the antibiotic sulfadiazine (SDZ) on the soil microbial communities. It was shown that manure alone has a stimulating effect on microbial activity. Only potential nitrification was negatively influenced by manure application. The addition of SDZ to the manure reduced microbial activity. Depending on the SDZ concentration, levels of activity were in the range of the control soil without manure application. Also, selected processes in nitrogen turnover were negatively influenced by the addition of SDZ to the manure, with nitrification being the only exception. The effects were visible for up to 4 days after application of the manure with or without SDZ and were correlated with the bioavailability of the antibiotic.  相似文献   

8.
The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.  相似文献   

9.
Zhou DM  Hao XZ  Wang YJ  Dong YH  Cang L 《Chemosphere》2005,59(2):167-175
Environmental safety of agricultural utilization of livestock and poultry manures from intensive farming is attracting great attention because the manures often contain high concentrations of heavy metals and organic pollutants. Pot experiments, in which a pig manure (PM), a chicken manure (CM) and a commercial organic manure (OM) with different concentrations of Cu and Zn to simulate soil metal accumulation by manure application for different times were utilized in a garden soil at a rate of 2% (W/W), were conducted to study the effect of application of these livestock and poultry manures on growth of radish (Raphanus sativus L.) and pakchoi (Brassica chinensis L.) as well as their Cu and Zn uptake. The results exhibit that the manures except the PM improved the growth of radish and pakchoi. The difference of biomass among the same manure treatments containing different concentrations of Cu and Zn, however, was insignificant. In addition, application of the livestock and poultry manures significantly increased soil pHs and electric conductivities (EC) compared with the control, which is ascribed that these manures had high pH and contained large amounts of inorganic ions. The available soil Zn concentrations in the PM were higher than that in the CM and OM, and the extractable soil Cu concentrations in the three manures were almost the same after radish growth in the garden soil but were different after pakchoi growth. Zinc and Cu concentrations in the radish and pakchoi tissues increased when the soil Zn and Cu concentrations increased by manures application, but were still within a safe value. An except is the treatment PM4 in which the Zn concentration of the above-ground part of radish was 28.7 mg kg-1, exceeding the Chinese Food Hygiene Standard of 20 mg kg-1 based on fresh weight. Good correlation was obtained between the extractable soil Zn (or Cu) concentrations extracted by 1.0 mol l-1 NH4NO3 and the Zn (or Cu) concentrations in radish and pakchoi tissues, which was expected to be effective in forecasting Cu and Zn availability to radish and pakchoi in manure agronomic utilization.  相似文献   

10.
Gravato C  Teles M  Oliveira M  Santos MA 《Chemosphere》2006,65(10):1821-1830
Fish are exposed in the aquatic ecosystems to different classes of pollutants. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals represent two important classes of aquatic contaminants. Thus, one lot of European eels (Anguilla anguilla L.) was pre-exposed during 24 h to 2.7 microM beta-naphthoflavone (BNF; a PAH-like compound), and subsequently exposed during 24 h to 0, 1 and 2.5 microM copper (Cu). Additionally, another lot not pre-exposed to BNF was exposed to the same Cu concentrations. BNF pre-exposure promoted a significant increase in liver ethoxyresorufin O-deethylase (EROD) activity, but did not change the other responses investigated in eels. On the other hand, both Cu concentrations did not modify the liver EROD activity either in eels pre-exposed to BNF or not. Liver total cytochrome P450 was increased in eels exposed to Cu 2.5 microM, being significantly only in eels not pre-exposed to BNF. Free sulfhydryl group content was decreased by 1 and 2.5 microM in eels pre-exposed to BNF or not pre-exposed, being significant at 2.5 microM Cu in eels not pre-exposed compared to its control. Liver total glutathione (TG), reduced glutathione (GSH) and GSH/oxidized glutathione (GSSG) levels were slightly decreased by 1 and 2.5 microM Cu in eels pre-exposed to BNF, whereas a slight tendency to increase was observed in eels not pre-exposed. Thus, liver TG and GSH significantly decreased in 2.5 microM Cu BNF pre-exposed eels compared to eels not pre-exposed to BNF. Liver glutathione reductase and catalase activities were significantly inhibited by 1 and 2.5 microM Cu in eels pre-exposed to BNF, concomitantly with a slight liver glutathione peroxidase tendency to decrease. Lipid peroxidation was significantly increased by 1 microM Cu in eels either pre-exposed or not pre-exposed to BNF. Liver H(2)O(2) was significantly increased by 1 microM Cu in eels pre-exposed to BNF. Liver DNA integrity was significantly decreased by 1 and 2.5 microM Cu in eels pre-exposed to BNF. The oxidative stress and genotoxic effects induced by Cu in eels pre-exposed to BNF revealed that the metal effects are potentiated by previous exposure to BNF.  相似文献   

11.
Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l(-1) to several ten ng Sn l(-1), but never over 200 ng Sn l(-1). The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l(-1)) equaling a flux of up to 70 mg Sn ha(-1) a(-1). In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g(-1)) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere.  相似文献   

12.
Biodegradation of nonylphenol in soil   总被引:8,自引:0,他引:8  
Chang BV  Chiang BW  Yuan SY 《Chemosphere》2007,66(10):1857-1862
We investigated the effects of various factors (brij 30, brij 35, yeast extract, hydrogen peroxide and compost) on the aerobic degradation of nonylphenol (NP) in soil and characterized the structure of the microbial community in that soil. Residues of NP were measured using gas chromatography-mass spectrometry (GC-MS) and a change of microbial communities was demonstrated using denaturing gradient gel electrophoresis (DGGE). The results showed that Taichung sandy clay loam had higher NP degradation rate than Kaoshiung silty clay. The addition of compost, yeast extract (0.5 mg/l), brij 30 (55 microM), or brij 35 (91 microM) enhanced NP degradation, while the addition of hydrogen peroxide (1.0 mg/l) inhibited its degradation. We also found that the addition of various substrates changed the microbial community in the soils. Cytophaga sp. and Ochrobactrum sp. were constantly dominant bacteria under various conditions in the soil.  相似文献   

13.
Wang SQ  Zhou DM  Wang YJ  Chen HM 《Chemosphere》2003,51(2):77-83
A study was carried out of Cu adsorption and desorption processes in red soil as affected by o-phenylenediamine (o-PD) in the range 0-80 mg/l. The results indicated that the presence of o-PD enhanced Cu adsorption in red soil in weakly acid media, meanwhile, desorption percentage of Cu from soil, extracted by 1.0 M MgCl(2), also increased when Cu adsorption in soil occurred in the presence of o-PD. The response of paddy rice to Cu in red soil shows that Cu toxicity was mitigated in the presence of o-PD and that the Cu concentration in rice straw decreased with increasing concentration of o-PD from 0 to 4.0 mmol/kg in soil. The fractions of background Cu in soil did not change noticeably in the presence of o-PD, whereas the effect of o-PD on the fractions of added Cu was significant. It was found that the exchangeable and carbonate bound Cu fractions decreased and the fraction of Cu bound to Fe-Mn oxides and organic matter increased with increasing o-PD concentration in soil when Cu was added at the same rate. Copper concentration in rice straw was significantly correlated with exchangeable Cu (r=0.961) and carbonate bound Cu (r=0.959) in soil. This result implicates that the behavior of Cu in soil is likely to be affected by organic pollutants containing amino groups.  相似文献   

14.
Present analyses of random amplified polymorphic DNA (RAPD) and Biolog GN substrate utilization pattern are combined to further study the diversity of microbial communities in four soils affected by agricultural chemicals. The results showed that the four soil microbial communities were apparently distinguishable in the diversity at RAPD level in terms of the richness and modified richness in the summer, which supports our previous report using the same soils in winter. A significant difference for the average well color development (AWCD) at 72 h incubation was found among the soils in winter using Biolog GN substrate utilization pattern, but this difference was not found among the soils in summer. However, Shannon-Weaver indices for microbial communities in the summer soils polluted by agricultural chemicals were significantly higher than those in winter at metabolic level; in contrast, no significant difference existed between the two seasons for microbial communities in the soil without chemical pollution. Present results suggest that the combined approach using RAPD and substrate utilization pattern could be used to effectively quantify microbial community diversity and its changes among the seasons in the soils affected by agricultural chemicals, simultaneously at molecular and physiological levels.  相似文献   

15.
使用镁盐改性硅藻土回收沼液中氮磷制得鸟粪石负载硅藻土 (Struvite-loaded diatomite,SD) ,将其用于土壤中铅 (Pb) 和金霉素 (CTC) 复合污染的原位修复。采用吸附-解吸实验评估SD对Pb和CTC迁移特性的影响,同时,通过测定土壤pH和酸缓冲能力、土壤Pb和CTC的有效态和形态、土壤速效磷和微生物群落结构变化等考察SD对土壤Pb和CTC的钝化能力,借助SEM、XRD、FT-IR等表征手段揭示其修复机理。结果表明,SD能有效降低Pb和CTC在土壤中的迁移特性;SD投加质量分数为3%,稳定49 d后,土壤酸中和能力提升1倍以上,土壤有效态Pb和CTC含量分别降低26%和56%,酸溶态Pb占比降低10%,残渣态Pb占比升高18%, CTC的水溶态和松散结合态占比分别降低5%和13%,紧密结合态CTC升高11%,一定程度上降低了Pb和CTC在土壤中的生物有效性;SD的投加可提升土壤速效磷含量,提高土壤微生物的相对丰度和多样性,尤其增加酸杆菌门 (Acidobacteria) 、绿弯菌门 (Chloroflexi) 和芽单胞菌门 (Gemmatimonadetes) 的相对丰度,降低放线菌门 (Actinobacteria) 和厚壁菌门 (Firmicutes) 的相对丰度;SD对土壤Pb和CTC的钝化机制主要为吸附和沉淀的协同作用。该研究可为污水氮磷资源化利用和重金属抗生素复合污染土壤原位修复提供参考。  相似文献   

16.
Abstract

Present analyses of random amplified polymorphic DNA (RAPD) and Biolog GN substrate utilization pattern are combined to further study the diversity of microbial communities in four soils affected by agricultural chemicals. The results showed that the four soil microbial communities were apparently distinguishable in the diversity at RAPD level in terms of the richness and modified richness in the summer, which supports our previous report using the same soils in winter. A significant difference for the average well color development (AWCD) at 72 h incubation was found among the soils in winter using Biolog GN substrate utilization pattern, but this difference was not found among the soils in summer. However, Shannon-Weaver indices for microbial communities in the summer soils polluted by agricultural chemicals were significantly higher than those in winter at metabolic level; in contrast, no significant difference existed between the two seasons for microbial communities in the soil without chemical pollution. Present results suggest that the combined approach using RAPD and substrate utilization pattern could be used to effectively quantify microbial community diversity and its changes among the seasons in the soils affected by agricultural chemicals, simultaneously at molecular and physiological levels.  相似文献   

17.
通过检测活性污泥的电子传递体系活性以及生物多样性,研究Ni2+对活性污泥微生物活性及群落多样性的影响。结果表明:与对照系统相比,5mg/L的Ni2+对2,3,5-lriphenylteItrazoliumchloride(TTC.ETS)活性未产生显著的影响;但当Ni2+的浓度进一步增大到10、20和40mg/L后,其对序批式反应器内活性污泥TTC—ETS活性的抑制率分别达到(36.794-11.14)%、(55.88±13.90)%和(70.97±6.78)%。低浓度Ni2+.能增强活性污泥微生物对碳源的利用,但高于10mg/L的Ni2+则显著抑制了活性污泥微生物对碳源的利用。各个SBR系统中微生物群落最常见的物种相近,物种丰富度和均一性则均有所不同,其中群落物种丰富度随着Ni2+浓度的增加而逐渐减小。TTC—ETS活性、平均每孔颜色变化率、Shan—liOn指数和Simpson指数,与Ni2+的胁迫浓度之间的显著相关性表明,它们均可有效地表征Ni2+胁迫对活性污泥微生物活性及群落多样性的影响程度。  相似文献   

18.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

19.
为解决植物配置对水质净化影响问题,研究了不同植物群落对生活污水的净化效果及其响应机理,并探索了人工湿地植物的最佳组合。结合景观生态学,运用7种湿地植物构建4种植物群落的人工湿地CW-G1、CW-G2、CW-G3、CW-G4,HRT为4 d,水力负荷为0.125 m3·(m2·d)−1,分析了各人工湿地对污染物的去除率,通过对植物酶活性变化、渗透调节能力和根际微生物演替情况探究了其净化机理。结果表明:CW-G1装置内群落对污染物去除效果最佳;CW-G1装置内植物的SOD、POD、CAT酶活性较单种显著提高,MDA含量显著降低;CW-G1装置内植物群落根际微生物Alpha多样性最高,门水平上各类菌丰度较为均匀。CW-G1装置内植物相互协作,提高抗氧化酶含量,增强了植物群落抗干扰能力,增加了根际微生物群落多样性、丰度和均匀度,植物-微生物协同高效净化污水。以上结果可为湿地植物的配置与运用提供参考。  相似文献   

20.
The use of copper-based fungicides leads to an accumulation of copper (Cu) in vineyard soils, potentially causing adverse effects to the microbial function and fertility of the soil. This study used a soil microcosm approach to assess the effects of Cu accumulation on microbial function in vineyard soils. Surface soil samples were collected from 10 vineyards and a number of un-impacted reference sites in each of three different viticultural regions of Australia. The field-collected soils were transferred to microcosms and maintained for up to 93 days in the laboratory at 20–22 °C and 60 % of their maximum water-holding capacity. The microbial function of the soils was indicated by measuring phosphomonoesterase, arylsulfatase, urease, and phenol oxidase activities. In general, the vineyard soils had greater concentrations of Cu and lower enzyme activities than in the reference soils, although a weak negative relationship between Cu and enzyme activity could only be found for phosphomonoesterase activity. The results show that soil physical–chemical properties (i.e., organic carbon, pH) are greater determinants of soil enzyme activity than increased soil Cu concentration at the Cu concentrations present in vineyard soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号