首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the saturated uptake kinetics of the limiting nutrient were followed as Thalassiosira pseudonana (Clone 3 H) batch cultures entered ammonium, nitrate, silicate and phosphate starvation. Cultures starved of ammonium or phosphate developed very high specific uptake capacities over a 24 to 48 h starvation period, due to both decreases in cell quota and increases in uptake rates per cell. In particular, the cell phosphorus quota decreased ca. 8-fold during phosphate starvation and specific uptake rates exceeded 100 d-1. In contrast, cultures entering nitrate or silicate starvation underwent little or no further cell division, and the uptake capacity declined during starvation. After 24 to 48 h starvation, an induction requirement for uptake of nitrate or silicate was apparent. These responses are consistent with adaptation to the pattern of supply of these nutrients in the field.  相似文献   

2.
Cell nitrogen quotas and uptake rates following ammonium additions were measured during ammonium-limited growth transients obtained by starving batch and chemostat cultures of Thalassiosira pseudonana (Clone 3 H). During starvation, cell quotas decreased by more than 50% in batch cultures. In chemostat cultures, the drop in cell quota during starvation decreased with dilution rate, from more than 50% at 1.45 d-1, to less than 10% at 0.22 d-1. Minimal levels of 3 to 4×10-2 pg-at. N cell-1 were reached after 24 h starvation in both batch and chemostat cultures. Uptake rates over the first minute of perturbation experiments were 3 times the long-term (10 to 30 min) rates. In batch cultures, specific uptake rates increased from 4 d-1 to 20 d-1 after 24 h starvation. Uptake rates per cell were independent of starvation time and dilution rate in chemostat cultures, but lower in non-starved batch cultures. The implications of these data for models of phytoplankton growth are discussed: the data support models which predict a depression in average growth rates when diatoms encounter microscale patches in oligotrophic environments.  相似文献   

3.
The uptake of nitrate and ammonium was measured separately in uni-algal, nitrogen-deficient cultures of four species of marine phytoplankton. Nitrogen-deficient phytoplankton took up ammonium at initial rates which greatly exceeded those measured for nitrogen-sufficient phytoplankton. However, nitrate uptake by nitrogendeficient cultures was generally much slower than either nitrate or ammonium uptake by nitrogen-sufficient cultures or ammonium uptake by nitrogen-deficient cultures. Considerable species differences were observed in the degree to which nitrogen deficiency increased ammonium uptake or decreased nitrate uptake. Loss of ability to take up nitrate, but enhanced ability to take up ammonium, as a result of nitrogen deficiency may be an adaptation to the different mechanisms by which nitrate and ammonium are supplied to the euphotic zone. In areas with an intermittent supply of nitrogen, changes in the ability of some species to take up nitrogen as a result of nitrogen starvation will influence species composition and complicate interpretations of measurements of nitrogen uptake.Contribution no. 1249 from the Department of Oceanography, University of Washington, and contribution no. 82006 from the Bigelow Laboratory for Ocean Sciences  相似文献   

4.
In 1987 effects of salinity fluctuations on growth of the centric diatom Skeletonema costatum (Greville) Cleve, isolated from the brackish Krammer estuary (SW Netherlands) in 1981, were investigated. Continuous cultures (12 h light: dark cycle) of S. costatum were adapted to constant salinity in natural (16.1) and synthetic (13.5) media. For several days the ammonium-limited cultures were exposed to a salinity fluctuation (minimum 4.8). Decreasing salinity caused an inhibition of photosynthesis, dark respiration and cell growth. Cellular pools of glucose decreased. While the carbohydrate content remained constant, the protein content increased slightly. Net carbon fixation was more inhibited than nitrogen assimilation. Ammonium accumulated during a salinity decrease; a total decline of the overcapacity of ammonium uptake was noticed and nitrogen limitation was relieved. Amino acid pools decreased, probably as a result of excretion (osmoregulation). The enzymes invoilved in ammonium assimilation showed an increased activity. Cellular activities were resumed during a salinity increase. Chlorophyll a increased; photosynthesis, ammonium uptake and growth were stimulated. The ammonium uptake capacity recovered completely; glutamic acid accumulation and increased glutamate-dehydrogenase (GDH) activity indicated supplementary ammonium assimilation via GDH. The activities of glutamine synthetase/glutamate synthase (GS/GOGAT) and GDH stabilized, and the cells returned to steady state under ammonium limitation.Communication no. 426 Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

5.
The influence of 49 combinations of salinity (10–40 S, at 5 S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30 S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.  相似文献   

6.
7.
Nitrate reductase (NR) activity appeared in ammoniumgrown cultures of 5 species of marine algae, representing 4 classes, after a short period of nitrogen starvation. In nitrogen-limited chemostat cultures of Nannochloropsis oculata and Chlorella stigmatophora there was an inhibition of photosynthetic carbon fixation during nitrate assimilation. In these organisms, nitrate assimilation was light-dependent and inhibited by 3-(3′,4′-dichloro-)-1-1-dimethyl urea (DCMU). In N. oculata, an obligate autotroph, nitrite assimilation was dependent on light absolutely. Physiological changes that occur in these organisms during nitrogen deficiency enable them to assimilate nitrogen rapidly when it becomes available.  相似文献   

8.
The interaction between nitrate and ammonium uptake was examined as a function of preconditioning growth rate and nitrogen source by adding nitrate, ammonium, or both to nitrogen-sufficient,-deficient, and-starvedSkeletonema costatum (Grev.) Cleve and nitrogen-deficientChaetoceros debilis Cleve. By simultaneously measuring the internal accumulation of intermediates of nitrogen assimilation and the rates of nitrogen assimilation, the metabolic control of nitrogen uptake could be assessed. After the simultaneous addition of nitrate and ammonium to culture, both nitrate and ammonium uptake rates were decreased in comparison with the rates observed when each was added alone, although nitrate uptake was usually decreased more than ammonium uptake. Since both nitrate and ammonium uptake rates vary with time, preconditioning growth conditions, nitrogen sources present, and species, it was necessary to use several different indices to quantify inhibition. In general, ammonium inhibition of nitrate uptake inS. costatum was greatest in cultures preconditioned to ammonium and those at low growth rates, whereas ammonium uptake was inhibited most in cultures preconditioned to nitrate. In nitrogen-deficientC. debilis, nitrate uptake was more inhibited by ammonium, but uptake returned to normal rates more quickly than inS. costatum, whereas inhibition of ammonium uptake was similar. These results explain why the interaction between nitrate and ammonium uptake in the field can be so variable. Inhibition of uptake is not controlled by internal ammonium or total amino acids, nor is it related to the inability to reduce nitrate. Instead, inhibition must be determined in part by the external concentration of nitrogen compounds and in part by some intermediate(s) of nitrogen assimilation present inside the cell.Bigelow Laboratory Contribution No. 82022  相似文献   

9.
Two spectrophotometric assays for protein commonly used in marine research (Coomassie stain, Bradford; alkaline copper, Lowry) and a more recent assay which has not been applied in this field (bicinchoninic acid, Smith) were compared for homogenates of the marine diatom Thalassiosira pseudonona using bovine serum albumin (BSA) as a standard. When homogenates were prepared by precipitating protein with trichloroacetic acid (TCA) and redissolving in 1 N NaOH, the protein content estimated by the Lowry and Smith assays agreed closely, but was consistently 20% higher than that indicated by the Bradford assay. To determine if this difference was due to the choice of a protein standard, protein from T. pseudonana was purified and compared to BSA, bovine gamma-globulin (BGG), and casein. The reactivity of the purified protein (expressed as the slope of the absorbance vs protein concentration curve) did not differ between cultures grown at high or low irradiance. For the Smith and Bradford assays the reactivity of BSA was not significantly different from algal protein, but for the Lowry assay, algal protein was significantly higher in reactivity than BSA. BGG was not significantly different in reactivity from algal protein for the Lowry and Smith assays, but BGG gave significantly lower absorbances than algal protein in the Bradford assay. These results suggest that BSA is a suitable standard for algal protein in the Bradford assays, while BGG is preferable for the Lowry assay. Either protein standard could be used for the Smith assay. Differences in purified algal protein reactivity compared to BSA could not account for the differences among the assays, nor could interference by chlorophyll a. Precipitating protein with TCA prior to analyses gave lower protein than direct analyses of homogenates for the Lowry and Smith assays, but no differences were found for the Bradford assay. As a result, the Lowry and Smith assays indicated up to 60% greater protein than the Bradford if TCA precipitation was not performed. This may be due to removal of free amino acids and small peptides which are less reactive in the Bradford assay. The 20% higher protein found in the Lowry or Smith vs Bradford assays may be due to different assay sensitivity to small peptides or other compounds which are precipitated along with proteins by TCA. Although the Smith assay is substantially simpler to perform than the Lowry, there appear to be no quantitative differences in the results. It remains unclear which spectrophotometric assay is most accurate, but the Bradford assay is faster and simpler, and is less likely to be affected by non-protein compounds found in marine phytoplankton.  相似文献   

10.
The relationship between in vivo light absorption efficiency of whole cells and in vitro absorption efficiency of algal pigments has been examined experimentally in the marine diatom Thalassiosira sp. In vitro absorption spectra were obtained for cells disrupted by either ultrasonic treatment or high-pressure shearing stress in a low-temperature (-40°C) pressure cell. A dimensionless measure of the magnitude of the package effect (Q a *), calculated from the ratio of whole-cell to disrupted-cell absorption, ranged from about 0.5 at the blue absorption peak of chlorophyll a (λ=435 nm) to 0.7 at the red chlorophyll a peak (λ=670 nm) to 1.0 at the absorption minimum (λ=600 nm). Cell diameter was found to be an inappropriate measure of size for assessing the magnitude of the package effect. Instead, the effective optical diameter for calculation of intracellular self-shading was found to be less than the cell diameter. This observation is consistent with the fact that most algal pigments are contained within chloroplasts, and that chloroplast volume is necessarily smaller than cell volume.  相似文献   

11.
The acclimated reproduction rates of 14 clones of the diatom Thalassiosira pseudonana were measured at 12°, 16°, 20°, and 24°C. Reproduction rate increased monotonically with an increase in temperature in all 14 clones. Significant genetic variability in reproduction rates and electrophoretic mobility of isozymes were observed among clones within a population from a single water bottle collected in a warm core eddy overlying slope water. The major genetic differentiation was between neritic and oceanic populations, with neritic clones having higher reproduction rates at all 4 temperatures. Surprisingly small genetic differences were observed among clones from neritic waters around the world. The slopes of the temperature-reproduction rate plots of all 14 clones were quite similar.Woods Hole Oceanographic Institution Contribution No. 4679  相似文献   

12.
Bracken ME  Stachowicz JJ 《Ecology》2006,87(9):2397-2403
The consequences of declining biodiversity remain controversial, in part because many studies focus on a single metric of ecosystem functioning and fail to consider diversity's integrated effects on multiple ecosystem functions. We used tide pool microcosms as a model system to show that different conclusions about the potential effects of producer diversity on ecosystem functioning may result when ecosystem functions are measured separately vs. together. Specifically, we found that in diverse seaweed assemblages, uptake of either nitrate or ammonium alone was equal to the average of the component monocultures. However, when nitrate and ammonium were available simultaneously, uptake by diverse assemblages was 22% greater than the monoculture average because different species were complementary in their use of different nitrogen forms. Our results suggest that when individual species have dominant effects on particular ecosystem processes (i.e., the sampling effect), multivariate complementarity can arise if different species dominate different processes. Further, these results suggest that similar mechanisms (complementary nutrient uptake) may underlie diversity-functioning relationships in both algal and vascular-plant-based systems.  相似文献   

13.
In 1987 effects of salinity fluctuations on growth of Ditylum brightwellii (West) Grunow, isolated from the Eastern Scheldt estuary (SW Netherlands) in 1981, were studied. D. brightwellii was grown in a 12 h light: dark cycle at constant salinity in brackish media. Ammonium-limited cultures were subjected to a salinity fluctuation. By decreasing the salinity to 4.8 photosynthesis and cell division were inhibited; cells were deformed. Protein and carbohydrate contents increased slightly, dark respiration was stimulated and cellular levels of glucose decreased at low salinity; this indicated a possible role of sugars in osmoregulation. Ammonium was accumulated in cultures, amino acids may have been stored; the role of the vacuole as a storage compartment was discussed. Both the ammonium uptake capacity and the affinity for ammonium decreased. Nitrogen limitation was relieved in the transient state. [With the activity of the nitrogen assimilation enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) being uninhibited by lower salinity.] Recovery from hypo-osmotic stress during a salinity increase was initiated by stimulated photosynthesis; chlorophyll a increased, but persistant contractions of cytoplasm (with chloroplasts) may have delayed cell growth. The glutamate dehydrogenase (GDH) activity decreased further whereas the cellular level of alanine increased in the presence of large ammonium pools; this may indicate a temporary activity of ADH (alanine dehydrogenase). Skeletonema costatum (Greville) Cleve, recovered faster from hypoosmotic stress than did D. brightwellii. Due to an osmotic shock from 13.6 to 7.1 S both species excreted amino acids and glucose; S. costatum accumulated more glucose, D. brightwellii accumulated more amino acids. S. costatum may with the competition for nitrogen in waters with an unstable salinity; it will replace D. brightwellii.Contribution no. 427 Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

14.
W. K. W. Li 《Marine Biology》1979,55(3):171-180
Prolonged exposure of Thalassiosira weissflogii (Grunow) to a sub-lethal concentration of cadmium in continuous culture resulted in the development of cellular characteristics allowing optimal growth in the presence of Cd. Examination of Cd-adapted and unadapted cells was made on steady-state populations growing at the same rate in order to eliminate any effects of differing growth rate on metabolism. Adaptation to Cd stress was manifested as increases in mean cell volume, dry weight, protein: DNA, protein: RNA, protein: carbohydrate, protein nitrogen: total cell nitrogen and carotenoid: chlorophyll a ratios. Subsequent exposure of the cells to Cd over a wide concentration range showed that cellular division rate, carbon photoassimilation and extracellular release of dissolved organic compounds were greatest near the Cd concentration to which the cells had previously been adapted. Enhanced cellular carbon photoassimilation in Cd-adapted cells correlated exactly with increased cellular protein content. The amount of dissolved organic excretion by Cd-adapted cells at the adaptation concentration was the same as that of unadapted cells at the same concentration. Since total carbon photoassimilation was greater in Cd-adapted cells at this concentration, the percentage of carbon excreted was less in these cells.  相似文献   

15.
O. Oku  A. Kamatani 《Marine Biology》1997,127(3):515-520
The marine planktonic diatom Chaetoceros anastomosans, which was isolated from Sagami Bay, was used for a study of resting spore formation mechanisms in batch culture experiments. Vegetative cells could grow at salinities ranging from 20.7 to 45.5‰, and resting spore formation was enhanced significantly in nitrate-depleted, high salinity media (40.0 to 45.5‰). The rate of resting spore formation (1.9 d−1) was comparable to the specific growth rate (1.8 d−1) of vegetative cells in the exponential growth phase in normal salinity medium. The size of resting spores formed under high salinity conditions was smaller than that of spores formed in normal salinity media. Unlike vegetative cells, resting spores seemed to possess some mechanisms to survive over a wider range of salinities by resisting bacterial attacks on their cell walls. Received: 4 August 1996 / Accepted: 27 August 1996  相似文献   

16.
Of the two resting life-forms of the planktonic diatom Chaetoceros pseudocurvisetus Mangin formed during periods of nitrate depletion, resting spores survived at least 1 month after spore formation at 24 °C, while resting cells survived only for about 10 d at the same temperature. Under nitrogen limitation, resting cells exhibited higher specific death rates than resting spores at temperatures ranging from 5 to 30 °C. After nitrogen replenishment, resting spores required a certain lag period of about 1 d to initiate vegetative growth at levels of nitrate supply from 0.5 to 20 M, while resting cells initiated vegetative growth almost immediately. Resting spores exhibited an intracellular accumulation of the supplied nitrate during germination and initial vegetative growth. The resting cells, however, exhibited more active vegetative growth, closely coupled with the uptake of the supplied nitrate. The resting spores and resting cells appear to play different roles in the maintenance of populations under nutrient fluctuations depending on the interval length between nutrient fluxes in natural waters. Received: 27 April 1998 / Accepted: 1 March 1999  相似文献   

17.
The temperate diatom Skeletonema costatum (Grev.) Cleve was grown in low temperature and/or low light conditions. The cultures were acclimatized for at least three months before experiments were begun. Our data indicate that the initial slope of the photosynthesis vs irradiance curve () is controlled predominantly by light history and the light-saturated photosynthesis (P max) by temperature. The number of divisions per day decreased with decreasing light intensity, but was identical for cultures grown at 3° or 18°C. The metabolic pathways of inorganic carbon fixation were not fundamentally affected by low temperature or low light intensity, but both these factors increased labelling of C3 compounds, synthesized by the Calvin-Benson cycle, and decreased that of phosphoenolpyruvate (PEP) and other metabolites. This indicates an enhancement of ribulose-1,5-bisphosphate (RuBP) carboxylase activity, which is the first step in the C3 pathway (3-phosphoglycerate and sugar phosphate synthesis); this may optimize cell functions. At low temperatures, a seven-fold increase in RuBP carboxylase activity per cell was observed. S. costatum is able to adapt to low irradiance by increasing and decreasing I k (the ratio of P max:, light intensity at onset of light saturation), and to low temperature by increasing its cellular chlorophyll a and RuBP carboxylase content. However, in the latter case, adaptation is not optimal. This study revealed two main features: (1) there is evidence that RuBP carboxylase has a key function in adjustment to high rates of photosynthesis at suboptimal temperatures or irradiances; (2) adaptive mechanisms are dynamic processes and the role of the time scale in physiological adaptation should be considered.  相似文献   

18.
Light-limited cultures of the planktonic diatom Ditylum brightwellii (West) Grunow were grown at 14 salinity. Cells were subjected to oxidative stress induced by copper, in the presence of zinc. In two continuous cultures with total Zn levels of 40 and 140 nM, respectively, dissolved Cu levels were increased from 3 to 126 nM. This resulted in an increased Cu adsorption capacity of the cell walls, probably due to an increase of surface area and roughness. Sexual reproduction (auxospore formation) was accelerated but was considered as a non-specific stress response. Cu-induced oxidative stress was indicated by a decrease of reduced glutathione (GSH), and a removal of superoxide anions monitored as an increasing activity of superoxide dismutase (SOD). Although Zn has no oxidative potential per se, cell division rates and chlorophyll c contents were lower in the culture with high Zn levels. In both cultures, the pro-oxidant Cu caused a decrease of chlorophyll a, decreasing photosynthetic O2 evolution and cell devision rates, and a growing number of deformed and broken cells.  相似文献   

19.
In order to investigate the role of the ionic relations in buoyancy of marine phytoplankton, voltage recordings have been made on the planktonic diatom Coscinodiscus radiatus using conventional glass microelectrode techniques. The most negative Nernst equilibrium voltage in C. radiatus is E K, the potassium equilibrium voltage of around-85 mV. Accordingly, stable voltages of-40 to-80 mV were recorded from C. radiatus which conforms to the general theory of electro-diffusion of ions through membranes (voltage range V d). In addition, membrane voltages much more negative, e.g. up to-140 mV (voltage range V p), have been recorded in C. radiatus; these voltages demonstrate the operation of an electrogenic pump. Within the voltage range V d, light-on and-off (microscope illumination) caused weak hyper- and depolarizations by about 2 mV with a time constant of about 10 s. Also within V d, spontaneous oscillations could be observed with a frequency of about 0.03 Hz and irregular amplitudes up to 30 mV. These phenomena are simulated by a model for electrocoupling of the major ion transporters in plants, as worked out for guard cells with their subtle osmoregulatory system. Equivalent mechanisms are suggested to operate in planktonic diatoms for adjustment of buoyancy by appropriate uptake and release of ions.  相似文献   

20.
Phytoplankton intracellular nitrate concentrations have been monitored in a 56-h experiment on a shipboard culture of surface sea water from an upwelling region. These measurements were related to parameters of biomass (particulate nitrogen) and nitrate assimilation using the 15N isotope technique and the nitrate reducase (NR) assay. The procedure for measuring cellular nitrate concentrations is described. This parameter exhibited diurnal variations, ranging from 3.1 to 20.6 ng-at nitrate per g-at particulate nitrogen, and could be correlated positively with NR activity. Nitrogen budgets show that NR activity represents only 12% of nitrate incorporation in organic phytoplankton material when nitrate is available in the sea water. However, upon depletion of the environmental nitrate (zero uptake), NR activity can fully account for the decrease of internal nitrate. From the results, it seems that internal nitrate content is a better index of nitrate consumption by marine phytoplankton than the external concentration of nitrate-nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号