首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Y. Loya 《Marine Biology》1972,13(2):100-123
This study investigates the community structure of reefbulding corals in terms of species composition, zonation and diversity patterns, as well as possible factors affecting the observed distributions. The study was carried out by a series of line transects run underwater with SCUBA apparatus from the reef flat to a depth of 30 m. The reefs of Eilat are of the fringing type, with seleractinian corals as the most important hermatypic organisms. The different zones of the reef are analyzed on the basis of topographical characteristics of the reef, as well as from the numerical data on abundance and living coverage, using cluster analysis of all transects surveyed. The present knowledge concerning species diversity is reviewed and analyzed in the context of hermatypic coral data. Three different diversity indices (the species count, Simpson's index and Shannon and Weaver's index) were calculated for estimating the diversity obtained on different zones of the reef. It was found that there is a successive increase in diversity of hermatypic corals from shallow water to a depth of 30 m. Species diversity and living voverage of corals were significantly greater in steeper zones as compared to flatter zones of the reef. A possible explanation for this phenomenon is the accumulation of sediments in the flat zones. It is proposed that the severe and umpredictable nature of the reef flat may account for low abundance and living coverage of corals. It is also proposed that deep-water species which do not invade shallow water are species which have developed high specialization to their local environment. The idea that light intensity is a significant factor in calcium-carbonate deposition by scleractinian corals is supported by field measurements of individual colonies at different depths.This paper is part of a thesis submitted to the State University of New York at Stony Brook in partial fulfillment of the requirements for a Ph. D. degree.  相似文献   

2.
We examined the impact of seven species of mobile mushroom corals (Fungiidae) on the community structure of sheltered reef slopes in terms of their patterns of migration, habitat use and competition with other benthic organisms. On fringing reefs at Eilat, Red Sea, polyps detached at 1 to 6 cm length, and grew to 11–55 cm length. Attached mushroom corals were oriented vertically in reef cavities. Detached corals migrated downward on the reef slope and onto rubble or soft substratum at the reef base, at 29 to 71 cmyr–1. Mobility decreased with corallum size and extent of undersurface ornamentation. In aquaria, small corals righted themselves and migrated up to 6 cm d–1 by nocturnally inflating and pushing their tissues against the substratum. Autonomous coral behavior and storm-generated water motion appeared to account for most fungiid mobility at Eilat. Mushroom corals did not damage each other upon contact, even in multi-species aggregations, but unilaterally damaged non-fungiid scleractinian corals. Their dominance during contact interactions retards overgrowth by larger attached scleractinians, and mobility allows them to colonize soft substrata not accessible to most other reef corals.  相似文献   

3.
Chronology of lead pollution contained in banded coral skeletons   总被引:4,自引:0,他引:4  
Lead concentrations relative to calcium within dated subsamples of hermatypic (reef-building) coral skeletons from St. Croix, US Virgin Islands, record ambient pollution levels. Concentrations within a coral from a polluted reef (395 ng g-1) average five-fold higher than within a coral from a pristine site (87 ng g-1). The lead chronologies of both corals show a significant increase in concentration towards the present during the past 26 yr (1954–1980). The increase in lead concentration in the coral from the pristine site is suggested to represent the increase in lead availability from global pollution. Coral skeletons offer the probability of development into tools for longterm chemical recorders of levels of lead and possibly other metals or compounds in seawater.  相似文献   

4.
G. Rilov  Y. Benayahu 《Marine Biology》2000,136(5):931-942
Artificial reefs have been suggested as a potential tool for the restoration of marine habitats. In the present study, the fish assemblage established around the oil jetties of Eilat (northern Red Sea, Israel) was compared to those found in three adjacent natural reef habitats: two in a nature reserve (one shallow and one deep) and a third deep site located near the city. Both species richness and fish abundance were found to be significantly higher around the vertical structures of the jetty's pillars than at all three natural sites, with the lowest values at the site closest to the city. The higher species richness at the jetties may be explained by (1) the vertical relief and high complexity of the jetty which offers a variety of niches for both shallow and deep coral reef species, and (2) by the reduction in available niches at the natural sites as a result of coral destruction due to anthropogenic activity. The pronounced difference in fish abundance is attributed mainly to the high seasonal recruitment at the jetty which was much lower at the natural sites. We therefore suggest that vertical structures are more attractive to fish settlement and recruitment than moderately sloped bottoms such as those found at the fringing reefs of Eilat. High similarity (51 to 56%) was found between fish assemblages at the natural sites while relatively low similarity (27 to 37%) was found between the jetty and the natural reefs. The jetty's complex vertical artificial structures can serve as a model for future construction of artificial reefs designed to restore the fish community in areas where the natural reefs have been damaged. It should be taken into account, however, that these do not necessarily mimic the natural environment but may rather establish a community of their own, which is influenced by the spatial orientation and complexity of the structure. Received: 30 December 1998 / Accepted: 9 December 1999  相似文献   

5.
The corallimorpharian Rhodactis rhodostoma (Ehrenberg, 1934) forms aggregations that dominate patches on some coral reef flats in the Red Sea. The outcomes and mechanisms of competition for space between this corallimorpharian and other sessile organisms are poorly understood. Polyps of R. rhodostoma were observed to overgrow zoanthids, hydrozoan corals, sponges and encrusting macroalgae on a fringing reef at Eilat, northern Red Sea. R. rhodostoma polyps also damaged, and in some cases overgrew, reef-building corals in the families Poritidae, Acroporidae and Pocilloporidae, most of which form branching colonies with small polyps that are subordinate in coral competitive hierarchies. In contrast, most stony corals in the families Faviidae and Mussidae had standoff interactions with R. rhodostoma, in which they prevented the corallimorpharians from damaging them or approaching closer than 1 to 3 cm. The latter corals are ranked at the top of competitive hierarchies for Indo-Pacific corals, and they form massive colonies of large polyps which may develop aggressive organs termed sweeper tentacles. Some soft corals that exude allelopathic chemicals also avoided overgrowth by the corallimorpharians. Tentacles along the oral disk margin of R. rhodostoma polyps were swollen and bulbous during contacts with cnidarians. These bulbous marginal tentacles had significantly thicker ectoderm and a higher proportion of holotrichous nematocysts than did the normally filiform marginal tentacles of R. rhodostoma polyps. It is concluded that, on the reef flat at Eilat, this corallimorpharian damages and overgrows a variety of sessile competitors, including branching stony corals, via the application of specialised marginal tentacles filled with penetrating nematocysts. R. rhodostoma is an intermediate competitor in the aggressive hierarchy among Indo-Pacific Anthozoa, including the reef-building corals. Received: 1 July 1998 / Accepted: 24 March 1999  相似文献   

6.
A 17-year monitoring programme of reef flats at Ko Phuket, Thailand afforded an opportunity to evaluate both univariate and multivariate measures of environmental stress in an assessment of change on coral reef ecosystems. The sites at Ko Phuket suffered the effects of dredging in 1986-1987 and then anomalously low sea levels in 1997-1998 as a result of climate-related events in the Indian Ocean. Univariate measures of species diversity and taxonomic distinctness ((*) increased across the reef flat, reflecting the greater effects of physical stresses on the inner reef flats (compared with outer reef flats) at all sites, with more congeneric species present on the inner reef and more confamilial species on the outer reef. Multivariate measures showed a clear breakdown in seriation patterns at all sites during the dredging in 1987 and in 1998, as a result of earlier negative sea-level anomalies. Recovery from environmental disturbances was obvious within 12 months in each case. The domination of the reefs by massive coral species, which are physiologically adapted to intertidal living and which display partial rather than total colony mortality, may be a factor contributing to the apparent resilience of the reef flats together with continued recruitment and survival of juvenile corals during adverse environmental conditions. Elevated sea temperatures and extensive bleaching of corals in 1991, 1995, and 1998 had no effect upon coral community measures, with many corals recovering their zooxanthellae numbers within 3-5 months of the bleaching events.  相似文献   

7.
Observations performed on coral colonies damaged during a very low tide on the shallow-water reef tables at Eilat (Red Sea), showed that most colonies are able to regenerate if parts of the living tissue remain intact on the skeletons. Brain-like corals, such asFavia favus andPlatygyra lamellina, were found to be more resistant to dessication than the delicate bush-like forms. It was also observed that the exposed skeletons of corals were immediately covered by a successive group of algae with a rich invertebrate epifauna among them. It is postulated that unpredicted extreme low water, occurring once in several years, could be the factor that prevents crowding on the reef tables, thus keeping high the level of coralspecies diversity.Supported, in part, by a grant from the Smithsonian Institution, USA. SFC-70074.This paper was presented at the Intecol Symposium held in Dubrovnik in March, 1972.  相似文献   

8.
Fricke  H.  Meischner  D. 《Marine Biology》1985,88(2):175-187
Depth distribution, zonation pattern and growth morphology of 17 hermatypic and 4 ahermatypic coral species were investigated at eight different locations along the Bermuda platform with the research submersible GEO and by SCUBA diving in August–September 1983. Hermatypic coral growth occurs to a depth of 50 to 70 m, with a single Montastrea cavernosa growing at 78 m. Dominant forms in shallow-water coral communities are Diploria sp. and Porites astreoides, while M. cavernosa, Agaricia fragilis and Scolymia cubensis occur in deep-water associations below 60 m. Vertical visibilities (up to 178 m) and distribution of the photosynthetically active radiation revealed good light penetration values (1% level at about 100 m depth), which should favour hermatypic coral growth to a much greater depth than it actually occurs. Nor should the prevailing temperatures limit the depth of coral growth. Most deep-water hermatypes observed grow on remnants of Pleistocene reefs down to about 60 m. The vast areas of large massed rhodolith nodules below 50 to 60 m are unsuitable bottom for coral colonisation. Macroalgae growth seems to be the strongest factor controlling coral growth in deep water. Bermuda stony corals have a low growth form diversity. Various intraspecific morphs may occur at the same as well as at different depths, with a general trend towards flatter shapes with depth. Comparison with a similar study on Red Sea corals suggests that annual distribution of radiant energy on the most northern Atlantic reefs of Bermuda may be responsible for the occurrence of flat and cuplike growth forms in relatively shallow water, and for the shallower depth limits of hermatypic growth.  相似文献   

9.
This study examines the abundances of three morphological categories of juvenile corals (massive, branching and encrusting) on two different types of natural substratum, dead massive and dead branching corals. The overall results show that the morphological characteristics of dead coral substratum have a significant influence on the coral recruitment patterns with respect to the morphology of the recruits: juvenile corals of massive and branching types were more abundant on substrates of corresponding morphology. The results obtained from this study suggest that dead coral might attract coral larvae that are morphologically similar. On the other hand, it may be the result of post-settlement mortality. Whatever the mechanism shaping the patterns is, it seems that the physical morphology of the dead coral substrate has a significant influence on the coral recruit assemblage. Hence, we suggest that substrate morphology can be an important qualitative factor for coral settlement and a possible determinant of community structure.  相似文献   

10.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

11.
Settlement of juvenile scleractinian corals was investigated from 1987 to 1990 on eutrophic and less eutrophic fringing reefs on the west coast of Barbados, West Indies. The number of coral recruits and number of recruiting coral species on cement blocks decreased with increasing eutrophication of the reefs. This may suggest lower settlement rates on eutrophic reefs, but could also liave resulted from higher post-settlement mortality, since blocks were examined only once after 3 yr of immersion. Coral settlement rates to artificial plates that were checked monthly were also lower on the more eutrophic reefs. This could result from lower local availability of larvae caused by fewer adult corals and/or lower reproductive rates of corals on eutrophic reefs. However, the ratio of coral recruits to adult coral abundance was considerably lower on eutrophic reefs, suggesting that local coral abundance alone can not explain lower settlement rates on eutrophic reefs. The lower rates on eutrophic reefs may result from a lower probability of coral larvae settlin when present, perhaps because of a limited availability of suitable settlement substrate. Colonization of settlement plates by non-coralline organisms was heavier on eutrophic reefs, and unoccupied space was lower, supporting the suggestion that suitable coral settlement substrate may be limiting on eutrophic reefs. Moreover, coralline algae, which facilitate metamorphosis and settlement of coral larvae, were less abundant on settlement plates on eutrophic reefs.  相似文献   

12.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

13.
U. Oren  Y. Benayahu 《Marine Biology》1997,127(3):499-505
 Coral reefs in the northern Gulf of Eilat are exposed to continuous man-made disturbances, resulting in decreased coral coverage and reduced recruitment at the Nature Reserve of Eilat. The construction of artificial reefs on sandy bottoms is a possible option to decrease diving pressure on natural reefs. In the present study we tested this hypothesis by submerging an experimental artificial reef anchored to the bottom at 18 m depth and floated vertically 3 m below water surface. The reef was composed of PVC plates, attached both vertically and horizontally along a wire. Propagules of two coral species, the stony coral Stylophora pistillata and the soft coral Dendronephthya hemprichi, were transplanted to this artificial reef. Planulae of S. pistillata were obtained during the breeding season, seeded in petri dishes in the laboratory and after 2 wk the dishes were transferred to the experimental artificial reef. Automized fragments of D. hemprichi which had previously settled on 10 × 10 cm PVC plates were transplanted onto the experimental artificial reef. The survivorship of the transplanted D. hemprichi colonies was significantly higher on the lower sides of shallower plates. Survivorship of S. pistillata colonies increased with depth when located on the vertical plates, or on the upper sides of the horizontal plates. The highest survivorship of this coral was on the vertical plates and on the upper sides of the horizontal plates, while very low survivorship was recorded on the lower sides. The results indicate that vertical artificial surfaces offer the optimal biotic and abiotic conditions for the survival of the two examined corals. The vertical plates are characterized by low sed imentation rates, low coverage of turf-algae, minimal grazing by sea urchins and absence of the competitor tunicate Didemnum sp. In addition, the vertical orientation of the experimental plates reduces shading and offers the required light intensity for zooxanthellate corals such as S. pistillata. Only a few studies to date have tried to implement artificial reefs in a coral reef environment. The results of the present study indicate the potential of enhancing recruitment of corals by transplantation of juvenile recruits onto appropriate artificial structures. Maximal survivorship of these recruits is dependent upon the structural features of the artificial reef, which should offer optimal conditions. Received: 25 May 1996 / Accepted: 15 July 1996  相似文献   

14.
Glassom  D.  Zakai  D.  Chadwick-Furman  N. E. 《Marine Biology》2004,144(4):641-651
Recruitment rates of stony corals to artificial substrates were monitored for 2 years at 20 sites along the coast of Eilat, northern Red Sea, to compare with those recorded at other coral reef locations and to assess variation in recruitment at several spatial scales. Coral recruitment was low compared to that observed on the Great Barrier Reef in Australia, but was similar to levels reported from other high-latitude reef locations. Pocilloporids were the most abundant coral recruits in all seasons. Recruitment was twofold higher during the first year than during the second year of study. There was considerable spatial variability, with the largest proportion of variance, apart from the error term, attributable to differences between sites, at a scale of 102 m. Spearmans ranked correlation showed consistency in spatial patterns of recruitment of pocilloporid corals between years, but not of acroporid corals. During spring, when only the brooding pocilloporid coral Stylophora pistillata reproduces at this locality, most coral recruitment occurred at central and southern sites adjacent to well-developed coral reefs. During summer, recruitment patterns varied significantly between years, with wide variation in the recruitment of broadcasting acroporid corals at northern sites located distant from coral reefs. Settlement was low at all sites during autumn and winter. This work is the first detailed analysis of coral recruitment patterns in the Red Sea, and contributes to the understanding of the spatial and temporal scales of variation in this important reef process.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
Acroporid corals are the main reef-building corals that provide three-dimensional habitats for other reef organisms, but are decreasing on many reefs worldwide due to natural and anthropogenic disturbances. In this study, temporal patterns of larval settlement and survivorship of two broadcast-spawning acroporid coral species, Acropora muricata and A. valida, were examined through laboratory rearing experiments to better understand the potential for larval dispersal of this important coral group. Many larvae were attached (but not metamorphosed) to settlement tiles on the first examination 3–4 days after spawning (AS). The first permanent larval settlement (i.e. metamorphosed and permanently settled juvenile polyps) occurred at 5–6 days AS, and most larval settlement (85–97% of total) occurred within 9–10 days AS. Larval survivorship decreased substantially to around 50% by the first week of the experiment and to approximately 10% by the second to third week. The rates of larval attachment, settlement, and the initial drop in survivorship of larvae suggest that effective dispersal of some acroporid species may largely be completed within the first few weeks AS.  相似文献   

16.
B. Rinkevich 《Marine Biology》1989,101(2):259-263
The role of autotrophic nutrition in the production of coral planula was investigated in two field experiments carried out in Eilat, the Red Sea during 1980 and 1981, on the branching coral, Stylophora pistillata. Photosynthetically fixed carbon in coral tissue significantly decreased during planulation compared to the non-reproductive season. Planula-larvae collected 1 to 7 mo after coral tissue was labelled with 14C contained significant amounts of 14C-labelled photosynthates. The results provide the first direct evidence that energy requirements for planula production in a hermatypic coral are supported by translocation of products from algal photosynthesis. It is suggested that this is also the case in other hermatypic species.  相似文献   

17.
Seven fringing reef complexes were chosen along the leeward coast (west) of Barbados to study the effects of eutrophication processes upon the scleractinian coral assemblages. The structure of scleractinian coral communities was studied along an eutrophication gradient with a quantitative sampling method (line transect) in terms of species composition, zonation and diversity patterns. On the basis of these data the fringing reefs were divided into three ecological zones: back reef, reef flat, and spur and groove. Statistically discernible and biologically significant differences in scleractinian coral community structure, benthic algal cover and Diadema antillarum Philippi densities were recorded among the seven fringing reefs. High correlations between environmental variables and biotic patterns indicate that the effects of eutrophication processes (nutrient enrichment, sedimentation, turbidity, toxicity and bacterial activity) were directly and/or indirectly affecting the community structure of scleractinian coral assemblages. In general, species diversity was most sensitive in delineating among-reef, and among-zone, differences, which were attributed to intensification of eutrophication processes. Porites astreoides Lamarck, P. porites (Pallas), Siderastrea radians (Pallas), and Agaricia agaricites (Linnaeus) were the most abundant coral species in the polluted southern reefs. The absence and/or low abundance of coral species previously characterized as well adapted to high turbidity and sedimentation [i.e. Montastrea cavernosa Linnaeus, Meandrina meandrites (Linnaeus)] indicate that eutrophication processes may adversely affect these species. It is suggested that sediment rejection abilities, combined with feeding and reproductive strategies, are the primary biological processes of scleractinian corals through which eutrophication processes directly and/or indirectly affect the structure of coral communities.  相似文献   

18.
Species that are strong interactors play disproportionately important roles in the dynamics of natural ecosystems. It has been proposed that their presence is necessary for positively shaping the structure and functioning of ecosystems. We evaluated this hypothesis using the case of the world's largest parrotfish (Bolbometopon muricatum), a globally imperiled species. We used direct observation, animal tracking, and computer simulations to examine the diverse routes through which B. muricatum affects the diversity, dispersal, relative abundance, and survival of the corals that comprise the foundation of reef ecosystems. Our results suggest that this species can influence reef building corals in both positive and negative ways. Field observation and simulation outputs indicated that B. muricatum reduced the abundance of macroalgae that can outcompete corals, but they also feed directly on corals, decreasing coral abundance, diversity, and colony size. B. muricatum appeared to facilitate coral advancement by mechanically dispersing coral fragments and opening up bare space for coral settlement, but they also damaged adult corals and remobilized a large volume of potentially stressful carbonate sediment. The impacts this species has on reefs appears to be regulated in part by its abundance—the effects of B. muricatum were more intense in simulation scenarios populated with high densities of these fish. Observations conducted in regions with high and low predator (e.g., sharks) abundance generated results that are consistent with the hypothesis that these predators of B. muricatum may play a role in governing their abundance; thus, predation may modulate the intensity of the effects they have on reef dynamics. Overall our results illustrate that functionally unique and threatened species may not have universally positive impacts on ecosystems and that it may be necessary for environmental managers to consider the diverse effects of such species and the forces that mediate the strength of their influence. Efectos Positivos y Negativos de un Pez Loro Amenazado Sobre Ecosistemas Arrecifales  相似文献   

19.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

20.
We compared densities, distributions and size frequencies of massive corals in the genus Porites on five relatively exposed, mid-shelf reefs (50 km offshore) in the central Great Barrier Reef with those on a sheltered inshore reef (10 km offshore). Data included various transect and mapping studies between 1984 and 1990, estimates of size-dependent damage from the crown-of-thorns starfish Acanthaster planci, estimated densities of herbivorous sea urchins (potential predators of juveniles), and observations of size-specific effects of tropical cyclones. Assemblages of Porites spp. on mid-shelf reefs were dominated by small colonies (2 to 10 cm diam) established either from planula larvae or from small tissue remnants that had survived A. planci predation in the early to mid-1980s. Large colonies (up to 10 m diam) were scarce, except for localized aggregations on terraces at the base of reef slopes (6 to 12 m deep). Extensive space suitable for settlement by coral larvae can be attributed to recurrent cyclones and A. planci outbreaks. Despite low sea urchin predation, the slowly growing Porites juveniles are likely to die from overgrowth by numerous, much faster growing corals. On the sheltered inshore reef, the coral community was dominated by very large (>5 m diam) Porites colonies, several centuries old; recruitment was mainly by fragmentation of large colonies; there was little space available for settlement, and probabilities of juvenile mortality from grazing urchins were high. Differences in settlement and early survival of Porites spp. are exacerbated by different regimes of storm damage. A model is proposed that links wave climate with the size and age reached by corals before dislodgement by storm waves, and which is consistent with observed densities and size-frequency distributions of Porites in sheltered and exposed areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号