首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fish eggs and larvae can be separated from invertebrate zooplankton by isopycnic centrifugation in gradients of sucrose or silica. Preserved samples of invertebrate zooplankton, fish eggs, and fish larvae, representing a typical assortment of marine plankton, were layered over linear gradients of 25 to 60% w/w (weight/weight) sucrose or 0 to 15% w/w silica (as Ludox AM) in 100 c3 swinging buckets, and centrifuged for 1 h at 1000 rpm (revs per minute). In sucrose gradients, the invertebrate zooplankton were confined to the two ends of the gradient, while 85% of the fish eggs were recovered from an intermediate zone (27.5 to 55% w/w). In Ludox AM, the fish eggs banded in a narrow region between 2 and 3% w/w, while fish larvae banded at the bottom of the gradient between 10 and 14% w/w. Of the 6 dominant classes of zooplankton, only Salpa overlapped appreciably with the fish eggs and none overlapped with the fish larvae. Of the gradient materials tested, Ludox AM offers the most advantages; sucrose may also be useful for subfractionation. Gradients of sodium bromide and dextran have been found to be totally unsuitable.Paper of the Journal Series, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08903, USA.  相似文献   

2.
Two groupings of larval fish were repeatedly identified by principal component analyses of larval densities from four broad-scale surveys during the spring and summer of 1985–1987 off southwestern Nova Scotia, Canada. Larvae originating from pelagic eggs (four species within Gadidae and Pleuronectidae) constituted one group, which were uniformly distributed over the sampling area with densities not correlated with bathymetry, although nearly all spawning occurs on the shallow western cap of Browns Bank, 100 km offshore. Larvae from demersal eggs (five species within Pholidae, Stichaeidae, Cottidae, Agonidae) constituted the second group, which dominated the shallow-water environments both inshore and on Browns Bank. Lower patchiness indices were evident amongst larvae from pelagic eggs in small and large sampling-gear collections (average 3.4 and 3.1, respectively) compared to fish hatching from demersal eggs (average 5.1 and 4.6). Fine-scale nearshore surveys over a 5 wk period in 1987 also showed that larvae of demersal eggs had a less variable distribution along an inshoreoffshore transect. Larvae from demersal eggs appear spatially persistent through the release of well-developed larvae from non-drifting eggs. These conclusions are consistent with other studies over a range of spatial scales in temperate and tropical environments, demonstrating that single-species models of larval dispersal are inadequate to account for the distributional patterns of larval fish in general.  相似文献   

3.
Plankton collected at discrete depths in Santa Monica Bay, California, USA, during January 1982 were examined for fish eggs and larvae that had been attacked or consumed by zooplankton. The bongo net remained open for only 3 min and samples were preserved within 5 min of capture. Juvenile and adult fishes that had been captured by otter trawl and preserved within 20 min of capture were examined for ingested fish eggs and larvae. Three copepods (Corycaeus anglicus, Labidocera trispinosa, and Tortanus discaudatus), one euphausid larva (Nyctiphanes simplex), one amphipod (Monoculoides sp.), and an unidentified decapod larva were found attached to fish larvae in the preserved plankton samples (attachment to 23% of the fish larvae was observed in one sample). Overall, about 5% of the white croaker (Genyonemus lineatus) larvae and 2% of the northern anchovy (Engraulis mordax) larvae had attached zooplankton predators. Most fish larvae with attached zooplankton predators were small. We found no indication of zooplankton predation on fish eggs. Few fish eggs and larvae were found in the digestive tracts of juvenile or adult fishes, and the ingested fish larvae were relatively large. The discussion considers apparent preyspecificity of the zooplankton predators as well as potential biases that may be associated with preserved samples collected by nets.  相似文献   

4.
Predation by the medusa Aurelia aurita L. on early first-feeding stage larvae of the herring clupea harengus L. was studied in the laboratory. The medusae were captured in Loch Etive, Scotland. Herring larvae were reared from the extificially fertilized eggs of spawning Clyde herring caught in March, 1982. Swimming speeds, volume searched”, capture efficiency and predation rates increased as medusa size increased. Predation rates on fish larvae increased with prey density, but appeared to approach a maximum at high prey densities; in 1 h experiments, a maximum rate of predation of 6.64 larvae h-1 was estimated by fitting an Ivlev function. A model to predict predation rates was constructed from swimming speeds, sizes and densities of medusae and larvae, and capture efficiency. The rates of predation predicted from the model fell within the range of experimental data, but tended to underestimate rates and did not account for saturation of medusae. Swimming patterns of medusae changed after prey capture: (a) before capture, encounter rates were low and medusae were relatively less active; (b) after capture of 1 larva, encounter rates doubled, with the stimulated medusae exhibiting increased activity and an aftered “searching” path; and (c) after capture of many larvae, swimming speeds and encounter rates of medusae decreased.  相似文献   

5.
The present paper compiles results of recent studies on distribution, abundance, migratory pattern and feeding of invertebrates and early stages of fish in the uppermost layer of the subtropical and boreal Atlantic Ocean. Three ecological groups are described: euneuston, living permanently at the surface; facultative neuston, invading the uppermost layer mainly during night; pseudoneuston, comprising the uppermost part of populations which are mainly concentrated in deeper layers. For several species of fish, a shift in behaviour was found: eggs and yolk-sac larvae are mainly missing from the uppermost layers, young post-larvae staying permanently close to the surface, and old larvae and juveniles performing diurnal vertical migrations. During daytime, the uppermost layer serves as a refuge for only a small number of welladapted organisms, while at dusk and at night considerable immigration occurs. During daytime, zooneuston is mainly carnivorous or omnivorous. In boreal and turbid waters, the ecological differences between the uppermost and lower layers are reduced. Neuston is an important element of the ecosystem in these areas.  相似文献   

6.
The spatial distribution of the most abundant eggs and larvae of teleost fish species on the continental shelf and slope off the northern Benguela region was studied in April 1986. The horizontal and vertical distribution of eggs and larvae were analysed together with environmental data, in order to determine patterns of ichthyoplankton distribution. Both species composition and relative egg and larval abundance levels exhibited important latitudinal differences during a period of quiescent upwelling with an intense intrusion of Angolan water into the system. Larval diversity was higher in the northern part of the study area, where, because of the intrusion of the warmer Angolan water, the water column was more stratified than in the southern part, where the affect of upwelling of South Atlantic Central Water was continuous and only a few species spawned. The frontal zone appeared to be a nursery ground for the most important pelagic species of the region:Trachurus trachurus capensis, Engraulis capensis, andSardinops ocellatus. Vertical egg and larval distributions showed evidence of stratification, with highest concentrations located in the uppermost 50 m. In comparison, during periods of intense upwelling, longitudinal gradients were responsible for the horizontal distribution of ichthyoplankton, and the vertical distribution of eggs and larvae were much more extensive because of the greater mixing of the water column.  相似文献   

7.
Scyphomedusae collected from Port Phillip Bay, Victoria, Australia, between 1984 and 1986, consumed a variety of zooplankton. The percentage composition of gut contents of Cyanea capillata (Linné) in order of decreasing importance was larvaceans 31%, cladocerans 29%, fish eggs 14%, copepods 11%, hydromedusae 9%, and ascidian tadpoles 3%. The percentage composition of gut contents of Pseudorhiza haeckeli Haacke was fish eggs 41%, copepods 33%, larvaceans 8%, cladocerans 4%, crab zoea 4%, and decapod larvae 1%. Both species of scyphomedusae showed strong positive selection for fish eggs and yolk-sac larvae, and negative selection for other prey items. When fish eggs were omitted from the selectivity analyses, C. capillata showed positive selection for amphipods, decapods, crab zoea, Podon spp., larvaceans and ascidian tadpoles, and negative selection for Evadne spp. and all copepod taxa. Pseudorhiza haeckeli showed positive selection for amphipods, decapod larvae, crab zoea and cladocerans, and negative selection for cirripede larvae, larvaceans and hydromedusae. Amongst copepods, P. haeckeli showed positive selection for calanoid and harpacticoid copepods and negative selection for cyclopoid copepods.  相似文献   

8.
An analysis of ichthyoplankton samples based on relative abundance reveals pronounced inshore/offshore distributional gradients for most Hawaiian fish larvae. Larvae of pelagic bay species are found almost exclusively in semi-enclosed bays and estuaries. Larvae of pelagic neritic species are more or less uniformly distributed with distance from shore. The larvae of reef species with non-pelagic eggs are most abundant close to shore, while those of reef species with pelagic eggs are most abundant offshore. Finally, the larvae of offshore (primarily mesopelagic) species show no clear pattern but frequently occur in high numbers nearshore. Within any group, variation in pattern was often evident; for example, although Hawaiian fishes of both the families Labridae and Mullidae spawn pelagic eggs, larvae of the former had not peaked in abundance 12 km from shore while larvae of the latter had peaked between 0.5 and 2 km. Some larvae which occur offshore are highly specialized morphologically for a pelagic existence (e.g. Chaetodontidae, which is illustrated) while others are little modified (e.g. Labridae). These findings indicate ichthyoplankton surveys in tropical areas must sample offshore areas in addition to the inshore adult habitat to obtain a complete picture.Hawaii Institute of Marine Biology Contribution No. 484.  相似文献   

9.
分别于2017年和2018年的5—7月在三峡库区支流小江渠口断面开展鱼类早期资源监测,以了解小江变动回水区鱼类早期资源现状。监测结果表明:共采集到7种产漂流性卵鱼类的鱼卵以及7种仔鱼;采集的鱼卵以似鳊(Pseudobrama simoni)、银(Squalidus argentatus)、翘嘴鲌(Culter alburnus)和蒙古鲌(Culter mongolicus)为主,而仔鱼则以子陵吻虎鱼(Rhinogobius giurinus)为主;不同年份主要产卵活动发生的时间存在差异;小江渠口镇铺溪村至汉丰湖调节坝之间江段共分布集中产卵场3处。小江变动回水区江段是产漂流性卵鱼类产卵场的分布区域,建议加强该江段生境和鱼类资源保护管理。  相似文献   

10.
The distribution and abundance of fish eggs and larvae have been studied at two Stations of Arasalar estuary. Eggs of Stolephorus sp., Mugil cephalus, Sardinella sp., Cynoglossus sp and the larvae of Stolephorus indicus, Ambassis commersoni, Terapon jarbua, Chanos chanos, Trichiurus sp Anguilla sp and Thryssa sp have been collected and identified. Environmental parameters such as temperature, salinity, pH and dissolved oxygen were also recorded. The present study clearly indicate the higher occurrence and abundant of fish eggs and larvae during March - July. The fair numbers of eggs and larvae indicate the existence of breeding ground within the estuary. Study on the physico-chemical parameters found that the abundance and distribution of fish eggs and larvae were influenced by the salinity of this estuary.  相似文献   

11.
O. Lindén 《Marine Biology》1978,45(3):273-283
The effects of petroleum hydrocarbons from two crude oils and one fuel oil (No. 1) were studied on the ontogenic development of the Baltic herring Clupea harengus membras L. Herring eggs exposed to water-soluble fractions of the oils at the time of fertilization showed no decrease in numbers of fertilized eggs compared to eggs exposed 6 or 72 h after fertilization. During embryongenesis, treatment with 3.1 to 8.9 ppm or 3.3 to 11.9 ppm total oil hydrocarbons from light fuel oil and the two crude oils respectively, gave rise to alterations in embryonic activity, decreased heart rate, and premature or delayed hatching. Although many larvae hatched from eggs exposed to contaminated water (3.1 to 11.9 ppm total oil hydrocarbons), the majority of the (70 to 100%) were malformed or dead 1 day after hatching. Exposure of eggs to 5.4–5.8 ppm total oil hydrocarbons resulted in significantly (P<0.001) decreased lengths of the larvae. Increased temperature (from 9° to 14°C) aggravated the effects of the oils. The results are discussed in relation to the potential effects of oil spills and chronic oil pollution on fish eggs and larvae in the Baltic Sea.  相似文献   

12.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

13.
Density stratification and respiration lead to vertical gradients in dissolved oxygen in many aquatic habitats. The behavioral responses of fish larvae to low dissolved oxygen in a stratified water column were examined during 1990–1991 with the goal of understanding how vertical gradients in dissolved oxygen may directly affect the distribution and survival of fish larvae in Chesapeake Bay, USA. In addition, the effects of low oxygen on 24-h survival rates were tested so that results of behavior experiments could be interpreted in the context of risk to the larve. Naked goby [Gobiosoma bosc (Lacépède)] and bay anchovy [Anchoa mitchilli (Valenciennes)] larvae strongly avoided dissolved oxygen concentrations <1 mg 1-1, which were lethal within 24 h at 25 to 27°C. In addition, naked goby larvae, whose behavior was tested at a wider range of dissolved oxygen concentrations, also showed a reduced preference for an oxygen concentration of 2 mg 1-1, which leads to reduced survival during long-term exposures and to reduced feeding rates. There were no major differences in behavior or survival between the two species, or between the two age classes of naked gobies tested. Results suggest that behavioral responses to oxygen gradients will play a large role in producing marked vertical changes in abundance of feeding-stage larvae in Chesapeake Bay; mortality from direct exposure to low oxygen will likely be much less important in producing vertical patterns of larval abundance.  相似文献   

14.
Collection and culture of the large lobate ctenophore Mnemiopsis mccradyi Mayer is described, including the requirements for successful development of larvae. Particular attention must be given to the collection of these delicate animals, the handling and provision of live microzooplankton of suitable size for the larvae, and the provision of food densities for the adults which neither stimulate “wasteful” feeding nor limit their growth. Although these ctenophores will ingest detritus and algal cells in high concentration, they lost weight at the same rate as starved individuals unless provided with living zooplankton. Under optimum conditions, specimens would lay eggs within 13 days of their own birth. By the 17th day they laid eggs daily, and had produced an average of 8,000 eggs within 23 days after birth. The maximum number of eggs laid by a single wild individual within 24 h after being brought into the laboratory was 10,000. Their high fecundity, rapid generation time, and ability to self-fertilize help to explain their sudden appearance in bloom proportions at periods of high food concentration in the environment, often referred to in the literature.  相似文献   

15.
E. D. Houde 《Marine Biology》1977,43(4):333-341
Bay anchovy (Anchoa mitchilli) eggs were stocked at densities from 0.5 to 32.0 l-1 and larvae were fed on wild plankton (copepod nauplii) in concentrations that ranged from 50 to 5000 prey l-1. Lined sole (Achirus lineatus) eggs were stocked at 0.5 to 16.0 l-1 and larvae were fed wild plankton at concentrations from 50 to 1000 prey l-1. Some larvae of each species survived at all stock and food levels to the transformation stage at 16 days after hatching. Survival rates for both species exceeded 40% when food concentration was 1000 l-1 or higher. Growth and dry weight yields also increased significantly at the higher food concentrations. Effects of initial stocking density were not well defined, but both survival and growth decreased at the highest stocking rates. Standardized culture of bay anchovy and lined sole larvae can be based on a food concentration of 1000 copepod nauplii l-1 to routinely produce healthy larvae.  相似文献   

16.
Ecological subdivision of marine organisms is often based on two characteristics: presence in a defined environment, and types of locomotion (degree of free active movement) in such an environment. The use of these characteristics results in a simple scheme: (1) Inhabitants of the boundary surface “ocean-atmosphere” (a zone including not only the surface film but also the thin subsurface water layer below it and the air layer just above it, i.e., pleuston and neuston). (2) Inhabitants of the deeper water layers of the ocean i.e., excluding the zone mentioned under (1): (a) passively drifting forms with very limited locomotory capacity, moving practically in the vertical plane only (plankton); (b) actively moving forms which migrate both vertically and horizontally (nekton). (3) Inhabitants of the “bottom”-benthos (level-bottom of oceans and coastal waters, tidal zones up to the upper supralittoral, different types of drifting and floating substrata, e.g. ship bottoms, harbour structures, buoys, driftwood, sargassum, whales, etc.). This simple scheme is essentially based on characteristics of adults. If developmental stages are considered, pelagic larvae of bottom invertebrates, eggs and larvae of fishes and other forms, usually present only temporarily in the plankton, neuston, and pleuston, can be distinguished as “mero-plankton”, “mero-neuston” and “mero-pleuston”, from the permanent “holo”-components of these groups. Division into “mero”-subgroups opposes all these larvae to those of planktonic, neustonic and pleustonic forms developing within the “parental” groups and their environments. However, the last category of larvae in the light of world-wide distribution of the seasonal reproductive pattern of marine invertebrates and some other organisms — especially in temperate and high latitudes — can also be rated to some degree as “mero”-(not “holo”-) components. The present paper proposes to unite all larvae of marine invertebrates (and of other organisms) undergoing pelagic development into one biological group, the “pelagic larvaton”. The main characteristic for all forms of this group is the presence of one and the same life-cycle stage in one and the same environment. All forms of the “pelagic larvaton” are, to various degrees, biologically different from their respective adult forms. Even the pelagic larvae of the holoplanktonic species exhibit some differences. Within the “pelagic larvaton”, 3 subgroups can be distinguished on the basis of their ecological peculiarities;
  1. Larvae undergoing their whole development in an environment different from that inhabited by their parents and belonging to a group different from that of their parental forms; e.g. the pelagic larvae of bottom invertebrates which develop in the plankton, neuston or pleuston.
  2. Larvae undergoing development in the same general pelagic environment, but in “non-parental” ecological groups; e.g. larvae of nektonic species developing in the plankton, neuston or pleuston; larvae of planktonic species in the neuston or pleuston; larvae of neustonic and pleustonic species in the plankton.
  3. Larvae undergoing development in the “parental” groups; e.g. larvae of planktonic species in the plankton, of neustonic species in the neuston, or of pleustonic species in the pleuston.
In contrast to the 5 ecological groups: benthos, plankton, nekton, neuston and pleuston, the “pelagic larvaton” represents rather a biological than an ecological group. The “pelagic larvaton” comprises the 5 ecological groups and maintains the permanent turnover of organic substances between water and bottom. This group short-circuits the interrelations between the 5 ecological groups in all possible combinations. The existence of the “pelagic larvaton” presents another illustration of the unity of the biological nature of the oceans. The present paper also discusses the specific distributional patterns of the pelagic larvae of bottom invertebrates and their biological role in the seas.  相似文献   

17.
Predation exerts tremendous selection pressure on all organisms. In this study, we exposed embryos of convict cichlids (Amatitlania siquia) twice daily to one of the following: (1) chemical alarm cues of damaged conspecifics + odour of a novel predator (Polypterus endlicheri), (2) chemical alarm cues of damaged conspecifics + water or (3) blank water. No chemical cues were presented after the eggs hatched. When the larvae were 9 days old (mean total length?=?5.7 mm), they were exposed to either predator odour or water. Those larvae that had been conditioned as embryos on alarm cues + predator odour showed a significant reduction in activity (i.e. anti-predator behavioural response) to predator odour relative to the other treatments. This is the first demonstration of acquired predator recognition by fish embryos.  相似文献   

18.
Females of the spionid polychaete Streblospio benedicti (Webster) produce either small eggs (60–70 μm diameter) and planktotrophic larvae, or large eggs (100–200 μm) and lecithotrophic larvae that reportedly do not feed. This intraspecific polymorphism, a form of poecilogony, is potentially useful in studies of larval ecology and evolution, but necessary data on larval form and function are lacking. This study describes the morphology and nutritional biology of larvae obtained from Atlantic (South Carolina) and Pacific (California and Washington) populations from 2003 to 2005. The two types of larvae produced by Atlantic S. benedicti differed greatly in length (229±22 μm SD for planktotrophs vs. 638±40 μm for lecithotrophs) and chaetiger number (2–5 vs. 10–11) at release from the female’s brood pouch. Planktotrophic larvae bore long provisional chaetae on their first chaetiger; provisional chaetae were absent in lecithotrophic larvae. Larvae from Pacific populations were all of the lecithotrophic form, and were similar to their Atlantic counterparts in all respects. High-speed video microscopy revealed that both types of larvae used opposed bands of cilia to capture suspended particles and transport them to the mouth, where they were often ingested. Lecithotrophic larvae reared with suspended phytoplankton (Rhodomonas sp., 104 cells ml−1) for 2 days grew significantly faster than sibling larvae reared without added food, indicating that these larvae can digest and assimilate ingested food. Larvae of S. benedicti that develop from large eggs are thus facultative planktotrophs instead of obligately non-feeding lecithotrophs, a result that affects the interpretation of comparative studies of the ecology and evolution of larvae in S. benedicti and certain other marine invertebrates.  相似文献   

19.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

20.
The Alcyonacean octocoral Alcyonium siderium Verrill and the sea anemone Metridium senile (L.), the only common perennial zooplanktivores on shallow (16-m depth) subtidal rock walls in much of northern New England, USA, are of similar heights and overlap in their habitat and microhabit distributions. The coelenteron contents of both species were sampled at four-hour intervals over a diel cycle and were compared to zooplankton available in the water at 1 to 5 cm from the rock wall, the height at which the cnidarians held their feeding tentacles. Prey in coelenterons of A. siderium were significantly smaller (means of 256 to 345 m), and those in coelenterons of M. senile were equal to or slightly greater in length (means of 415 to 1006 m) than the available zooplankton. The diets of A. siderium and M. senile differed significantly from each other and from the available zooplankton. A. siderium showed strong positive electivites for ascidian larvae and for foraminiferans, and strongly negative electivities for most crustaceans. M. senile had strong positive electivities for barnacle cyprids, ascidian larvae, and gammarid amphipods, and strong negative electivities for invertebrate eggs, foraminiferans, calanoid and harpacticoid copepods, and ostracods. Electivities may reflect tentacle avoidance or escape by motile prey as well as predator preference. Substratum-associated organisms (e.g. demersal crustaceans, larvae of benthic invertebrates) were the most common items in the diets of both species, suggesting a tight benthic food web, similar to the situation for coral reef anthrozoans which rely on reef-generated zooplankton. A. siderium ate large numbers of ascidian larvae which, as benthic adults, compete for space with A. siderium and can overgrow small colonies. Predation on the larvae of a competing species may alleviate competition by decreasing the competitor's recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号