首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gametophytes of 9 laminarian species (4 from southern California, and 5 from central California, USA) became fertile in the unicellular stage (female gametophytes) or in a few-celled stage (male gametophytes), when appropriate temperatures and a sufficiently high quantum irradiance in the blue part of the spectrum were supplied. Vegetative growth, leading to the formation of filamentous gametophytes was light-saturated at relatively low irradiances (4 W m-2; equivalent to about 2 nE cm-2 sec-1 or an illuminance of 1000 lux), whereas 2 to 3 times this irradiance in continuous fluorescent cool white light was needed to induce the majority of the gametophytes to become fertile. An illuminance of 8300 lux did not inhibit the development of the gametophytes from southern Californian species. Egregia menziesii exhibited an exceptionally low quantum demand for induction of fertility. Gametophytes of species from central and southern California differed in regard to their temperature optimum for growth (12°C in the former, 17°C in the latter) and their upper temperature limit for reproduction (17°C in the former, 20°C in the latter).  相似文献   

2.
Controlled laboratory experiments were conducted to examine how photosynthesis and growth occur in Potamogeton wrightii Morong under different photoperiods and nutrient conditions. The experiment was based on a 3×2 factorial design with three photoperiods (16, 12 and 8 h) of 200 μE · m?2·s?1 irradiance and two nutrient conditions, high (90 μmol N · L?1·d?1 and 9 μmol P · L?1·d?1) and low (30 μmol N L?1·d?1 and 3 μmol P · L?1·d?1). After 14, 28, 56 and 70 days of growth, plants were harvested to determine net photosynthesis rate and various growth parameters. Above- and below-ground biomass were investigated on days 56 and 70 only. Plants under low nutrient conditions had greater leaf area, more chlorophyll a, a higher rate of net photosynthesis and accumulated more above- and below-ground biomass than plants in the high nutrient condition. Plants with an 8 h photoperiod in the low nutrient condition had a significantly higher rate of net photosynthesis, whereas 8 h photoperiod plants in the high nutrient condition had a lower rate of net photosynthesis and their photosynthetic capacity collapsed on day 70. We conclude that P. wrightii has the photosynthetic plasticity to overcome the effects of a shorter photoperiod under a tolerable nutrient state.  相似文献   

3.
V. A. Gerard 《Marine Biology》1990,107(3):519-528
Comparison of cultured sporophytes and gametophytes in common-garden experiments confirmed the existence of ecotypic differences in light-related traits among populations ofLaminaria saccharina (L.) Lamour. Cultured sporophytes from the turbid habitat in Long Island Sound, New York, USA, grew faster under both limiting and saturating daily irradiances than sporophytes from shallow and deep habitats along the Atlantic coast of Maine. Rapid growth of turbid plants was attributable to several factors, including high photosynthetic capacity and efficiency [due to differences in photosynthetic unit (PSU) number and size], low respiration rates, and high surface area:weight ratios. In contrast to sporophytes, microscopic gametophytes from the three kelp populations grew at similar rates under limiting and saturating daily irradiances. Biomass-specific photosynthesis vs irradiance (PI) parameters were similar for gametophytes from the shallow, deep, and turbid sites, despite population differences in chlorophyll-specific PI parameters and PSU characteristics. However, turbid gametophytes produced microscopic sporophytes more rapidly than gametophytes from the shallow and deep sites, apparently due to a lower blue-light requirement for gametogenesis. Ecotypic differences in sporophytes and gametophytes ofL. saccharina from shallow, deep, and turbid habitats can be understood as phase-specific adaptations.  相似文献   

4.
Growth and photosynthesis in the blade of Saccharina sporophytes are strongly stimulated by blue light. However, little is known about the effect of blue light on the early development and longitudinal photosynthesis profile of Saccharina sporophytes. In this study, S. japonica sporelings were cultured under blue or red light for 8 weeks. Blue light affected longitudinal, tangential cell divisions and tissue differentiation early in sporophyte development. The number of latitudinal cells in the blade under blue light was over fivefold that under red light. In addition, the number of cell layers was higher in the growing point than in the blade under blue light, whereas sporelings grown under red light contained only a single cell layer. Under blue light, the photosynthetic capacities of the growing region, blade and stipe were similar, and the maximum relative electron transport rate was even lower in the growing point than in the blade. The longitudinal photosynthesis profile suggested that blue light stimulated the enzymes participating in light-independent carbon fixation in the growing point and accordingly was less dependent on high light irradiances. Collectively, the results indicated that blue light promotes the early development of S. japonica sporophytes, which was attributed to both photomorphogenetic responses and photosynthetic reactions.  相似文献   

5.
Zoospores, gametophytes, young sporophytes and discs cut from mature sporophytes of Laminaria digitata, L. hyperborea and L. saccharina were exposed in the laboratory to UV-radiation, with a spectral composition and irradiance similar to natural sunlight, for periods ranging from 15 min to 8 d, and were then returned to white light. Germination of zoospores and the growth of gametophytes were reduced after exposures to UV longer than 1 h, whereas UV had little effect on the growth of young or mature sporophytes unless exposure continued for more than 48 h. The variable fluorescence (F v:Fm) of all stages was strongly reduced immediately after short exposures to UV, but recovered almost completely within 24 h. However, exposure of gametophytes to UV for >4 h resulted in little or no recovery of F v:Fm, whereas >16 h of UV were required to produce this result in young sporophytes, and >48 h in mature sporophytes. Thus, sensitivity to UV-radiation decreased from gametophytes to sporophytes, and with increasing age of sporophytes, but, in gametophytes, growth appeared to be a more sensitive indicator of UV-damage than F v:Fm after 24 h recovery. The responses to UV of the zoospores and gametophytes of all three species were similar, but both growth and fluorescence measurements suggested that the sporophytes of L. saccharina were more sensitive to UV than those of the other two species.  相似文献   

6.
Sporophytes of the brown algaLaminaria saccharina (L.) Lamour grown at 15°C contained significantly more chlorophylla (chla) than did similar plants grown at 5°C. The increase in chla in 15°C plants was due to increased numbers of photosystem II reaction centes, and possibly to increased photosynthetic unit size, compared with 5°C plants. These changes were associated with increased values (photosynthetic efficiencies) in 15°C-grownL. saccharina relative to 5°C-grown plants. The changes in together with reduced respiration rates allowed 15°C-grownL. saccharina to achieve net photosynthesis and light-saturated photosynthesis at a lower photon fluence rate (PFR) than 5°C plants when both groups were assayed at the same temperature (15°C). The photon fluence rates necessary to reach the compensation point and achieve light-saturated photosynthesis (I c andI k , respectively) increased with increasing incubation temperature inL. saccharina grown at both 5 and 15°C. However, acclimation responses to growth temperature compensated for the short-term effect of temperature onI c andI k . Consequently, plants grown at 5 and 15°C were able to achieve similar rates of light-limited photosynthesis, and similarI c andI k values at their respective growth temperatures. These responses are undoubtedly important for perennial seaweeds such asL. saccharina, which frequently grow in light-limited habitats and experience pronounced seasonal changes in water temperature.Please address all correspondence and requests for reprints to I.R. Davison  相似文献   

7.
To determine the impact of photosynthesis and transpiration on nitrogen removal in wetlands, an artificial wetland planted with reeds was constructed to treat highly concentrated domestic wastewater. Under different meteorological and hydraulic conditions, the daily changes of photosynthesis and transpiration of reeds, as well as nitrogen removal efficiency were measured. It was found that net photosynthesis rate per unit leaf area was maintained on a high level (average 19.0 μmol CO2/(m2·s)) from 10:00 to 14:00 in July 2004 and reached a peak of 21.1 μmol CO2/(m2·s) when Photon Flux Density was high during the day. Meanwhile, TN and NH4 +-N removal efficiency rose to 79.6% and 89.6%, respectively—the maximum values observed in the test. Correlation coefficient analysis demonstrated a positive correlation among photon flux density, net photosynthetic rate, transpiration rate, and TN and NH4 +-N removal efficiency. In contrast, there was a negative correlation between stomatal conductance and TN and NH4 +-N removal efficiency. Results suggest that the photosynthesis and transpiration of wetland plants have a great impact on nitrogen removal efficiency of wetlands, which can be enhanced by an increase in the photosynthesis and transpiration rate. In addition, the efficiency of water usage by reeds and nitrogen removal efficiency could be affected by the water level in wetlands; a higher level boosts nitrogen removal efficiency.  相似文献   

8.
D. Hanelt 《Marine Biology》1998,131(2):361-369
The capability of several macroalgal species to protect photosynthesis from excessive irradiance by dynamic photoinhibition was investigated relative to their depth distribution in summer 1995 in the Kongsfjord (79°N; 12°E, Ny Ålesund, Spitsbergen, Norway). Photoinhibition of photosynthesis was induced by exposure of algae from different water depths to a high photon fluence rate of 500?μmol?m?2?s?1 for 2?h. Changes in optimal quantum yield (F v/F m) were measured during the inhibition phase. Recovery of photosynthesis was subsequently induced by dim white light (10?μmol?m?2?s?1) and observed as changes in the variable fluorescence. With a newly developed mathematical model different parameters of the response kinetics of inhibition and recovery were calculated and related to the depth distribution of each algal species. It is shown that two components with slow and fast reaction kinetics, respectively, are involved in photoinhibition and recovery of photosynthesis. Their possible molecular bases are discussed. The half-life time (τ) of the inhibition and recovery phases, i.e. the time necessary to reach half maximal response, is clearly related to the depth distribution of the investigated species. Algae collected close to the water surface show a fast reaction of both photoinhibition and recovery and, hence, have a low τ. With increasing depth the reactions become slower and τ increases. τ was highest in deep water algae. Further analysis of the reaction kinetics in Laminaria saccharina shows that the relative proportion of the two kinetics involved change with the collection depth. In contrast, a significant difference in the reaction rates of both kinetics was not observed.  相似文献   

9.
The combined effects of temperature, light and symbiont density on the metabolic rate and calcification of the temperate coral Astrangia danae were studied experimentally using colonies containing different concentrations of zooxanthellae. After acclimation to five temperatures between 6.5° and 27°C, and incubation at three light levels and in darkness, respiration and photosynthesis were measured and corrected for rates due to commensals alone. Calcification rates were regressed on zooxanthellae concentration and production in order to define “symbiotic” and “non-symbiotic” averages, and the enhancement of calcification by symbiotic interactions in the polyps. Respiration by the polyparium varied less with temperature between 11.5° and 23°C than that of the commensals, suggesting physiological acclimation by the coral tissue. In-vivo zooxanthellae photosynthesis increased linearly with temperature and was near its maximum at 400 μEin m?2 s?1, but the photosynthesis of the endolithic algae of the corallum varied little between 11.5° and 27°C. Calcification at any given temperature was near its maximum at 40 μEin m?2 s?1 in both symbiotic and non-symbiotic corals. CaCO3 deposition increased linearly with temperature in non-symbiotic colonies and in symbiotic colonies incubated in the dark. In symbiotic colonies, calcification in the light increased above these basic rates as temperature rose above 15°C. Below 15°C, symbiotic interactions failed to stimulate calcification, apparently due both to a lowering of zooxanthellae photosynthesis and to a decrease in the enhancing effect of any given level of primary production.  相似文献   

10.
The effects of temperature on growth rate of rapidly-growing cultured macrosporophytes of 9 isolates of Atlantic Laminaria comprising 4 species have been investigated. No significant population variation was observed within species despite wide variations in temperature between the original collecting sites. L. saccharina showed a broad temperature optimum in the 10°–15°C range, whereas L. longicruris had a sharp optimum at 10°C. L. digitata and L. hyperborea grew more slowly, with only slightly sub-optimal growth over a wide temperature range, but with peaks at 10°C (L. digitata) and 15°C (L. hyperborea). The maximum survival temperatures of individual male and female vegetatively-growing gametophytes were ascertained for these species plus the Arctic L. solidungula, and were as follows: L. saccharina and L. longicruris, 23°C; L. digitata (male), 23°C; L. digitata (female), 22°C; L. hyperborea, 21°C; L. solidungula, 18°C. The lack of within-species differences demonstrates that the success of the genus in areas with different temperature regimes is brought about by phenotypic plasticity of individuals rather than the selection of temperature races or ecotypes.  相似文献   

11.
The contribution of enhancement to the total photosynthesis of marine macroalgae in their natural habitats was estimated by comparing the photosynthesis measured by O2-electrode in five broad-band light fields with that predicted (on the assumption that no enhancement was occurring) from the photosynthetic action spectrum of each plant and the spectral distribution of the light fields. The excess of measured values divided by calculated values provided a measure of enhancement. Although 37% enhancement was observed for red algae in unfiltered quartz-iodine light, and 18% for green and brown algae, substantially lower values were obtained for all species in more natural light fields. In those typical of shallow coastal waters, phycoerythrin-rich red algae exhibited 15 to 20% enhancement, but little enhancement (<5%) was detected in other algae. In a green light field, representing deep coastal water, there was no significant enhancement in any species, and only green and brown algae showed any enhancement (ca 8%) in broad-band blue light, similar to that in deep oceanic waters. Quantum yields of 0.09 to 0.10 O2 molecules per absorbed photon were recorded in most light fields for green and brown algae with thin thalli, but yields decreased in the blue light field and in species with thicker thalli. All red algae had quantum yields of about 0.08 O2 molecules per absorbed photon, except in the blue light field, in which quantum yields were reduced by 70%.  相似文献   

12.
Oxygen evolution and uptake by whole thalli of the large marine alga Laminaria longicruris de la Pylaie were measured for 24 h, once every 2 weeks for a year, using large chambers to incubate the plants on the sea bed. Diel rates of photosynthesis and respiration were calculated from these measurements and continuous light measurements were used to extrapolate the data between observation dates. The resulting estimates were combined with measurements of growth and carbon content to give an annual carbon budget for a typical mature plant. Annual net assimilation was 6.8 mgC per cm2 of frond surface (71 cal cm-2). Approximately 45% of this appeared in the production of new frond tissue, and a further 12% was accounted for by storage of carbon in mature frond tissue. About 8% was needed for stipe growth, and the remaining 35% was assumed to be lost as dissolved organic carbon. Diel net photosynthetic rates reached a maximum in June and July and were negative only in November, indicating an ability to produce a photosynthetic surplus throughout winter. In early winter the plants drew on stored reserves to supplement photosynthesis in providing carbon for growth, but from January onwards photosynthesis provided more than enough carbon for growth.  相似文献   

13.
Biomass, photosynthesis and growth of the large, perennial brown alga Laminaria saccharina (L.) Lamour. were examined along a depth gradient in a high-arctic fjord, Young Sound, NE Greenland (74°18'N; 20°14'W), in order to evaluate how well the species is adapted to the extreme climatic conditions. The area is covered by up to 1.6-m-thick ice during 10 months of the year, and bottom water temperature is <0°C all year round. L. saccharina occurred from 2.5 m depth to a lower depth limit of about 20 m receiving 0.7% of surface irradiance. Specimen density and biomass were low, likely, because of heavy ice scouring in shallow water and intensive feeding activity from walruses in deeper areas. The largest specimens were >4 m long and older than 4 years. In contrast to temperate stands of L. saccharina, old leaf blades (2-3 years old) remained attached to the new blades. The old tissues maintained their photosynthetic capacity thereby contributing importantly to algal carbon balance. The photosynthetic characteristics of new tissues reflected a high capacity for adaptation to different light regimes. At low light under ice, or in deep water, the chlorophyll a content and photosynthetic efficiency (!) were high, while light compensation (Ec) and saturation (Ek) points were low. An Ec of 2.0 µmol photons m-2 s-1 under ice allowed photosynthesis to almost balance, and sometimes exceed, respiratory costs during the period with thick ice cover but high surface irradiance, from April through July. Rates of respiration were lower than usually found for macroalgae. Annual elongation rates of leaf blades (70-90 cm) were only slightly lower than for temperate L. saccharina, but specific growth rates (0.48-0.58 year-1) were substantially lower, because the old blades remained attached. L. saccharina comprised between 5% and 10% of total macroalgal biomass in the area, and the annual contribution to primary production was only between 0.1 and 1.6 g C m-2 year-1.  相似文献   

14.
The mechanism of calcification and its relation to photosynthesis and respiration were studied with Ca2+, pH and O2 microsensors using the scleractinian coral Galaxea fascicularis. Gross photosynthesis (Pg), net photosynthesis (Pn) and dark respiration (DR) were measured on the surface of the coral. Light respiration (LR) was calculated from the difference between Pg and Pn. Pg was about seven times higher than Pn; thus, respiration consumes most of the O2 produced by the algal symbiont's photosynthesis. The respiration rate in light was ca. 12 times higher than in the dark. The coupled Pg and LR caused an intense internal carbon and O2 cycling. The resultant product of this cycle is metabolic energy (ATP). The measured ATP content was about 35% higher in light-incubated colonies than in dark-incubated ones. Direct measurements of Ca2+ and pH were made on the outer surface of the polyp, inside its coelenteron and under the calicoblastic layer. The effects on Ca2+ and pH dynamics of switching on and off the light were followed in these three compartments. Ca2+ concentrations decreased in light on the surface of the polyp and in the coelenteron. They increased when the light was switched off. The opposite effect was observed under the calicoblastic layer. In light, the level of Ca2+ was lower on the polyp surface than in the surrounding seawater, and even lower inside the coelenteron. The concentration of calcium under the calicoblastic layer was about 0.6 mM higher than in the surrounding seawater. Thus Ca2+ can diffuse from seawater to the coelenteron, but metabolic energy is needed for its transport across the calicoblastic layer to the skeleton. The pH under the calicoblastic layer was more alkaline compared with the polyp surface and inside the coelenteron. This rise in pH increased the supersaturation of aragonite from 3.2 in the dark to 25 in the light, and brought about more rapid precipitation of CaCO3. When ruthenium red was added, Ca2+ and pH dynamics were inhibited under the calicoblastic layer. Ruthenium red is a specific inhibitor of Ca-ATPase. The results indicated that Ca-ATPase transports Ca2+ across the calicoblastic layer to the skeleton in exchange for H+. Addition of dichlorophenyldimethylurea completely inhibited photosynthesis. The calcium dynamics under the calicoblastic layer continued; however, the process was less regular. Initial rates were maintained. We conclude that light and not energy generation triggers calcium uptake; however, energy is also needed.  相似文献   

15.
Pieces of the reef coral Montipora verrucosa (Lam.), collected from Kaneohe Bay, Oahu, Hawaii in 1982, were grown in four low-light treatments (11% sunlight): blue, green, red and the full spectrum of photosynthetically active radiation (PAR); and at high-intensity full PAR (90% sunlight). These acclimated corals were then tested for photosynthetic ability in blue, green, red, and white light. The photosynthetic parameters that were measured were; ligh-saturated photosynthetic rate, the initial slope of the photosynthesis/irradiance curve, the light intensity where these two lines crossed, and dark respiration. While acclimation intensity had a pronounced effect, the results also showed that the color of the acclimation treatment influenced the photosynthetic responses of the corals. The color of the light used in the measurements of photosynthesis had much less effect on the photosynthetic responses of the corals.Contribution No. 729 of the Hawaii Institute of Marine Biology  相似文献   

16.
The effect of light quality on growth, photosynthesis and carbon metabolism in two species of marine algae,Cyclotella nana (Hustedt) andDunaliella tertiolecta (Butcher), was examined. Relative growth constants forC. nana were 0.37, 0.29 and 0.25 in blue, white and green light, respectively. Corresponding constants were 0.41, 0.31 and 0.29 forD. tertiolecta. Photosynthetic rates in both species were higher in blue light and lower in green light compared with white light of the same intensity. More than 60% of14C assimilated byC. nana orD. tertiolecta grown in blue or green light was incorporated into the ethanol-insoluble fraction, compared with 10 to 30% in this fraction in white light. The relative importance of the various components within this fraction was independent of light quality. Although less14C was assimilated into the ethanol-soluble fraction in blue or green light, there was a relative increase in some amino acids and organic acids in this fraction and a decrease in sugars and sugar phosphates relative to white light of the same intensity. These differences were independent of light intensity, photosynthetic rate and cell density in the cultures.  相似文献   

17.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

18.
The red algaGelidium sesquipedale (Clem.) Born. et Thur. has been cultured in chemostats to assess the effects of light quality and photon-fluence rate (PFR) on growth, photosynthesis and biochemical composition. Plants under blue and red light (BL and RL) showed higher growth rates than under white light (WL) of the same PFR (40 mol m–2 s–1). The light-saturated rate of photosynthesis was higher for algae grown under BL and RL than for algae grown under WL. When algae were transferred to WL of moderate PFR (100 mol m–2 s–1), the light-saturated rate of photosynthesis decreased, being higher in previously RL-grown algae than in previously BL- and WL-grown algae. The initial slope of photosynthesis-irradiance (PI) curves () was affected by PFR but not by light quality. Pigment content was little affected by light quality. Light-quality treatments also affected the biochemical composition of the alga; previous exposure to various light treatments activate or repress several metabolical pathways that are fully expressed in the subsequent phase of WL of moderate PFR. Thus, phycobiliproteins and soluble proteins increased for previously BL- and RL-grown algae, whereas insoluble carbohydrate concentration was reduced, indicating a change of the C-partitioning between carbon compounds and organic nitrogen compounds. Inorganic nitrogen metabolism was also affected by light: under WL of moderate PFR, NO3 was totally depleted from sea water, and maximal values of NO3 uptake were recorded. In addition, neither NO2 nor NH4 + was released. However, when algae were transferred to a low PFR, there was a drastic reduction of NO3 uptake under WL, which only partially recovered over time. It was accompanied by the release of NO2 , but not NH4 +, to the culture medium. Under BL and RL, however, there was a transient enhancement of NO3 uptake that was followed by a net release of NO2 and NH4 . Growth rates were not correlated with PFR. This could be due to the the dynamics of internal carbon mobilization and accumulation in the algae. When algae were exposed to a moderate PFR of WL, carbon requirements for growth were satisfied by photosynthesis. Thus, there was a net accumulation of carbon in the tissue. In contrast, when algae were exposed to low PFRs of either WL, BL or RL, observed growth rates could not be maintained by photosynthesis and carbon was mobilized.  相似文献   

19.
Selected features of Alaria marginata Postels et Ruprecht, Laminaria saccharina (L.) Lamouroux and Cymathere triplicata (Postels et Ruprecht) J. G. Agardh meiospores were described using flow cytometry. The relative sizes (forward scatter), chlorophyll contents (red fluorescence) and DNA contents (blue fluorescence) were measured on living, fixed, Hoechst and DAPI (4,6-diamidino-2-phenylindole) stained and unstained cells. The meiospores were similar among species and the frequency distributions of the monitored features were essentially normal. Meiospores sorted for low blue fluorescence departed significantly from the expected 1:1 male to female ratio in favour of the male. Cells sorted for high blue fluorescence did not result in a departure from the expected 1:1 ratio. We suggest that our ability to sexually sort meiospores is a result of a differential nonstoichiometric fluorescence in DNA, which possibly reflects a greater DNA compactedness and/or nuclear protein content in the male meiospores.  相似文献   

20.
Daily compensation irradiation for net photosynthetic rates (ΣI comp) of Skeletonema costatum (Greville) Cleve, Chaetoceros ceratosporum Ostenfeld, Nitzschia sp., Thalassiosira nordenskiöldii Cleve, and Chroomonas salina (Wislouch) Butcher were measured during 1979 to obtain values for use in ecological models describing compensation and critical depths of marine phytoplankton. Batch cultures of these unicellular algae were exposed to temperatures and photoperiods varying from 6° to 15°C and 8.4 to 16.0 h, conditions typical of surface water in Saanich Inlet, a fjord in Vancouver Island, British Columbia, Canada. Results obtained with S. costatum and T. nordenskiöldii provided estimates of ΣI comp varying between 1.8 and 13 J cm-2 d-1, from which a mean value of 7.0 J cm-2 d-1 was calculated for use in ecological models with neritic phytoplankton. No seasonal variation in compensation irradiation was noted because photosynthetic efficiencies, which increased as division rates increased, were balanced by respiration rates, which increased as temperature increased. Results obtained with Chaetoceros ceratosporum, Nitzschia sp., and Chroomonas salina were difficult to interpret, because respiration rates were stimulated and depressed by light, respectively, for the first two species and the last one. This light effect was greatest when cells grew under conditions of low temperature and short photoperiod. Also, under winter and spring conditions, cells of Nitzschia sp. appeared to fix CO2 in the dark and with low irradiances by mechanisms other than photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号