首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以六方板短孔道分子筛Zr-Ce-SBA-15和纤维状长孔道分子筛SBA-15为载体,采用等体积浸渍—H2还原法合成了纳米零价铁(NZVI)复合材料NZVI/Zr-Ce-SBA-15和NZVI/SBA-15,采用XRD、SEM等手段进行了表征,并比较了二者对硝基苯的还原性能。表征结果显示,介孔材料能有效阻止NZVI颗粒的团聚,经负载后其粒径变小。实验结果表明:短孔道Zr-Ce-SBA-15比长孔道SBA-15更适合作载体;在NZVI/Zr-Ce-SBA-15和NZVI/SBA-15投加量均为1.0 g/L、初始硝基苯质量浓度为20 mg/L、pH为6的条件下,二者对硝基苯的去除率分别为94%和83%,相应的苯胺生成量为10.0 mg/L和7.8 mg/L;当NZVI/Zr-Ce-SBA-15投加量为1.0 g/L、初始硝基苯质量浓度为20 mg/L、pH为3时,硝基苯去除率为98%,相应的苯胺生成量为11.8 mg/L。  相似文献   

2.
反硝化处理硝氮废水的动力学研究   总被引:2,自引:0,他引:2  
对反硝化法处理高浓度硝氮废水的动力学进行了研究,获得了最佳动力学条件,在温度为30℃左右,pH为7-8,MLSS为3g/L左右,C/N为0.95-1.0,进水硝氮质量浓度为300mg/L,水力停留时间为6-8h的条件下,出水NOx^--N的质量浓度小于20mg/L,COD小于100mg/L。  相似文献   

3.
黎先发 《化工环保》2014,34(4):305-310
利用工业碱木质素分别经KOH及H3PO4活化制备两种木质素活性炭(KAC和PAC),并用于模拟硝基苯废水的处理。采用SEM和IR等手段对木质素活性炭进行了表征。考察了木质素活性炭加入量、废水pH、吸附时间等因素对硝基苯吸附量的影响。表征结果显示,KAC具有丰富的孔结构,PAC表面含有多种功能基团。实验结果表明: 在吸附温度298 K、初始硝基苯质量浓度250 mg/L、木质素活性炭加入量1.0 g/L、废水pH 3、吸附时间24 h的条件下,KAC及PAC对硝基苯的吸附量分别为237.8 mg/g和211.9 mg/g,去除率分别达到91%和84%; KAC及PAC对硝基苯的吸附过程符合拟二级动力学方程,吸附等温线满足Langmuir等温吸附方程;当解吸剂的V(乙醇)∶V(去离子水)=9时,在PAC和KAC上吸附的硝基苯的解吸率分别达到99%和93%;木质素活性炭重复使用5次后,KAC和PAC对硝基苯的吸附量分别为115.4 mg/g和130.7 mg/g。  相似文献   

4.
生物质吸附剂处理活性艳红X-3B废水   总被引:2,自引:0,他引:2  
采用城市污水处理厂二沉池的剩余活性污泥为原料,以浓度为3mol/L的ZnCl2溶液浸泡污泥,采用水蒸气为活化气和保护气,在600℃下活化污泥3h,制备出性能良好的生物质吸附剂,其碘吸附值为388.95mg/g,比表面积为447.79m^2/g,平均孔径为4.39nm,孔体积为0.31cm^3/g,微孔体积为0.09cm^3/g。实验结果表明,用该生物质吸附剂处理活性艳红X-3B废水,在废水(10mL)中活性艳红X-3B质量浓度为300mg/L、生物质吸附剂加入量为0.20g、吸附时间为30min的条件下,废水脱色率可达99.7%。活性艳红X-3B在生物质吸附剂上的吸附行为遵循Lagergren二级动力学规律,同时也可用一级吸附动力学方程描述。  相似文献   

5.
硝基苯废水处理技术   总被引:3,自引:0,他引:3  
硝基苯是化工市场中应用广泛的化工初级原料 ,主要用于染料、香料、农药及炸药等行业。硝基苯具有致突变性 ,可引发高铁蛋白血红症 ,可通过呼吸道、皮肤接触等使人体受到不同程度的伤害。目前 ,硝基苯的生产多采用苯硝化制得。其生产工艺为苯与混酸 (硝酸与硫酸 )发生硝化反应 ,经过中和、水洗、初馏及精馏得到成品硝基苯。生产中的废水主要来自中和和水洗过程 ,其中硝基苯的质量浓度约 2 0 0 0 mg/L。在生产过程中一般设有汽提装置 ,对废水中硝基苯进行初步回收 ,经汽提后的废水中硝基苯的质量浓度约为 1 0 0 mg/L,远远高于国家《工业污水…  相似文献   

6.
采用水热合成—高温碳化—涂饰的方法制备了介孔碳修饰石墨电极,并将其用于模拟硝基苯废水的电化学处理,考察了废水pH、电流密度、电解质投加量对处理效果的影响。表征结果显示,修饰电极表面具有丰富的介孔结构,因而比石墨电极具有更高的硝基苯去除率和苯胺生成量。实验结果表明,在废水pH为7.0、电流密度为15 mA/cm~2、电解质硫酸钠投加量为1.775 g/L的条件下处理初始硝基苯质量浓度为100 mg/L的模拟废水,电解3.0 h时的硝基苯去除率高达99.6%,苯胺生成量最高达45.54 mg/L。  相似文献   

7.
考察了2,5-二氟硝基苯(2,5-DFNB)的厌氧降解特性及F~-对其厌氧降解过程的影响。实验结果表明:当初始2,5-DFNB质量浓度为5~100 mg/L时,随着降解时间的延长,2,5-DFNB对厌氧消化产甲烷的抑制效应逐渐减弱直至消失;在厌氧降解过程中,2,5-DFNB的降解基本无延滞期,但仅发生了硝基转化,并未实现还原脱氟;2,5-DFNB的厌氧降解动力学符合Andrews模型,最大比降解速率、底物饱和常数、底物抑制常数分别为5.9 mg/(g·h),67.7 mg/L,1 299.6 mg/L;质量浓度为10~80 mg/L的F~-对2,5-DFNB厌氧降解过程影响甚小,而质量浓度大于100 mg/L时则产生了较严重的抑制作用。  相似文献   

8.
采用臭氧氧化—曝气生物滤池联用处理实际生产中排放的含硝基苯类化合物废水。实验结果表明:臭氧氧化过程可破坏硝基苯类化合物的苯环结构,显著提高有机物的可生物降解性;单独采用臭氧氧化法,在臭氧氧化柱进水pH为9、臭氧加入量为200m g/L的条件下,硝基苯类化合物的去除率可达98%;采用臭氧氧化—曝气生物滤池联用处理含高浓度硝基苯类化合物废水,COD去除率可达80%以上,处理后废水COD稳定在50m g/L以下。  相似文献   

9.
用活性炭粒子群电催化反应器处理氯苯和硝基苯生产废水   总被引:2,自引:1,他引:1  
采用自制的活性炭粒子群电催化反应器对氯苯和硝基苯生产废水进行处理,考察了槽电流、停留时间对氯苯、硝基苯去除效果的影响。在槽电流20-25A、停留时间30min的条件下,氯苯生产废水中的氯苯质量浓度为3.3~109.9mg/L、苯质量浓度为13.1—395.7mg/L时,氯苯和苯的去除率分别在99%和97%以上,TOC和色度的去除率分别在71%和92%以上;硝基苯生产废水中硝基苯、二硝基苯酚、对硝基氯苯的质量浓度分别为4.5—292.3,83.3—348.0,69.5—93.9mg/L时,硝基苯和二硝基苯酚的去除率分别在96%和99%以上,TOC和色度去除率分别在90%和98%以上,对硝基氯苯在出水中未检出。  相似文献   

10.
吴宏  张立新  赵长春 《化工环保》2007,27(6):576-578
采用流动注射在线富集分光光度法测定水样中痕量Cr(Ⅵ),考察了流路条件、显色条件和共存离子的影响。在H:SO。浓度为1.2mol/L、2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚溶液质量浓度为1.75g/L的条件下,试样富集4min,测定Cr(Ⅵ)的线性范围为0.01~0.60mg/L,检出限为3μg/L。连续10次测定质量浓度为0.20mg/L的Cr(Ⅵ)标准溶液相对标准偏差为0.4%。方法可应用于河水和工业废水中痕量Cr(Ⅵ)的测定,加标回收率为93.3%~106.4%。  相似文献   

11.
铁屑-烟道灰内电解法处理模拟分散大红GS染料废水   总被引:2,自引:1,他引:2  
采用铁屑-烟道灰内电解法处理模拟分散大红GS染料废水。实验结果表明,在废水pH为5、铁屑加入量为6g、烟道灰加入量为8g、搅拌时间为20m in的最佳条件下处理250mL质量浓度为50m g/L的染料废水,废水的脱色率达81.1%。经铁屑-烟道灰处理后,分散大红GS染料在227.0nm处的特征吸收峰显著降低。所含偶氮基团被还原为苯胺类物质,铁屑被氧化为Fe2+,碱性条件下,Fe2+与OH-生成Fe(OH)2絮凝体。内电解法处理染料废水是氧化还原作用、混凝吸附作用等综合效应的结果。  相似文献   

12.
胡绍伟  王飞  陈鹏  王永  徐伟 《化工环保》2014,34(4):344-347
采用内电解—Fenton氧化—絮凝沉淀的化学集成技术预处理焦化废水,优化了各工段的运行参数。实验结果表明:在钢铁铁屑与活性炭的体积比为1∶1的条件下,内电解工段的优化参数为进水pH 2.6~3.1、HRT=1.0 h;Fenton氧化工段的优化参数为Fe2+加入量200 mg/L、H2O2加入量1 000 mg/L、进水pH 3.0左右、反应时间1.0 h;絮凝沉淀工段的设定参数为进水pH 9.5~10.0、聚丙烯酰胺加入量1 mg/L、静置沉降0.5 h。在上述工艺条件下,该集成技术对废水的总COD去除率大于55%,处理后的废水BOD5/COD大于0.28,不添加稀释新水即可进入后续生化处理系统。该工艺占地面积小、系统结构简单、易于工业化,废水预处理成本为4~5元/t。  相似文献   

13.
内电解法处理偶氮染料废水   总被引:2,自引:0,他引:2  
帅佳慧  龚文琪 《化工环保》2007,27(2):149-151
采用内电解法处理偶氮染料废水。正交实验结果表明,铸铁铁屑加入量对废水脱色率的影响最大,其次是酸性反应pH,再次是碱性反应pH,最后是碱性反应时间。最佳处理工艺条件为:铸铁铁屑加入量10g,酸性反应pH2.0,碱性反应pH7.0,碱性反应时间10min。此条件下脱色率达98.89%。铸铁铁屑使用6次后对废水的脱色率明显下降,将使用6次后的铸铁铁屑活化,活化后废水脱色率由86.80%提高至93.83%。  相似文献   

14.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

15.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

16.
This contribution reports a novel and cost efficient strategy for nickel ion removal from metal finishing effluents by electro-dissolution of scrap aluminium and iron sacrificial anodes. Electro-coagulation of effluent was carried out at 30 mA/cm2 current density for 60 min. The nickel ion concentration of electroplating effluent was analysed by Atomic Absorption Spectroscopy. SEM images of iron and aluminium scrap anodes were critically analysed. Parameters such as heavy metal removal, anode dissolution rate with respect to heavy metal removal, reaction kinetics and cost estimation have been elaborately studied. Electro-coagulation at 30 mA/cm2 for 60 min using iron and aluminium scrap anodes resulted in 95.9 and 94.1 % nickel ion reduction, respectively, with 0.0094 and 0.0053 g/ppm dissolution rates. The energy consumption for scrap aluminium and iron anodes was 0.0547 kWh/L. Loose internal bonding and spongy surface morphology of used metal scrap render high porosity and active surface area, enhancing reaction rate. Low cost and ready availability of waste scrap makes the process of electro-coagulation economically viable. Thus, the findings from this contribution point decisively at the superiority of waste metal scrap-based anodes for economic and environmentally sustainable heavy metal ion removal from metal finishing effluent.  相似文献   

17.
采用吸附-Fenton氧化-絮凝法处理对硝基苯胺生产废水(简称废水),研究了吸附剂、脱附温度、絮凝剂等因素对处理效果的影响.经实验确定的最佳工艺条件为:DM301大孔树脂加入量5.0 g/L,吸附时间20 h,Fenton氧化pH 3.0,H_20_2加入量0.3 moL/L,m(Fe):m(H_20_2)=6,絮凝阴离子型聚丙烯酰胺加入量20 mg/L.在此条件下对COD为2 780 mg/L、色度为185倍和pH为12.2的废水进行处理,出水的COD、色度和pH分别为169 mg/L、10倍和6.5,COD去除率和色度去除率分别达到93.9%和94.5%.DM301树脂在10~25次重复使用后对硝基苯胺的平均总去除率为47.7%,对硝基苯胺的平均回收率为37.9%.  相似文献   

18.
以负载不同金属的硅胶为催化剂,采用催化臭氧氧化法处理抗生素废水生化出水,并对催化剂投加量、反应时间等反应条件进行了优化。实验结果表明:铁/硅胶催化剂效果最好;在铁/硅胶催化剂投加量为0.33 g/L、反应时间为1 h的条件下处理COD为954.7 mg/L、BOD5为66.8 mg/L、ρ(氨氮)为98 mg/L的抗生素废水生化出水,COD去除率为54.9%,氨氮去除率为44.4%,BOD5/COD由0.07提高至0.20。  相似文献   

19.
环氧氯丙烷生产废水的资源化处理技术   总被引:1,自引:0,他引:1  
帅晓丹  曹国民  洪芳  盛梅 《化工环保》2013,33(6):518-522
采用催化湿式过氧化物氧化法(CWPO)处理环氧氯丙烷生产废水,考察了反应温度、反应时间、反应pH、双氧水和FeSO4#x000b7;7H2O加入量及投加方式等因素对TOC去除率的影响。实验结果表明:CWPO工艺适宜的反应条件为反应温度90℃,反应pH2.0~3.0,FeSO4#x000b7;7H2O2加入量7.50~8.75g/L,双氧水加入量75mL/L,反应时间100min;双氧水和Fe2+分多次投加时的TOC去除效果明显优于一次性投加;优化条件下,环氧氯丙烷废水经CWPO工艺处理后,TOC由1790mg/L降至138mg/L,符合氯碱厂隔膜电解槽进槽盐水的要求,可以资源化利用。  相似文献   

20.
废钢铁是我国物资回收与再生资源利用体系中的重要资源,也是非常重要的战略性资源,是钢铁工业最主要的两种原料之一(另一种是铁矿石)。与铁矿石相比,废钢铁更符合绿色可持续发展的需要和钢铁行业超低排放政策的要求,未来废钢铁资源在钢铁工业发展中的重要性可能会不断提升。着重探讨了未来10年废钢铁资源产生量的变化趋势,以及对钢铁工业原料结构变化的影响。未来中国的废钢铁资源可能不仅能满足自身钢铁工业发展的需要,同时也可能为世界钢铁工业的发展提供重要的原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号