首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper takes the ecological water conveyance project (EWCP) that transfers water from the Bosten Lake, to Daxihaizi Reservoir, and finally to the Taitema Lake as a case study to analyze the dynamic change of the groundwater depth, the vegetation responses to the elevation of the groundwater depth as well as the relationship between the groundwater depth and the natural vegetation. The results from many years’ monitoring in field indicate: (1) the groundwater depth has been elevating gradually with the increase in the times of watering and the elevation range has been expanding continuously in the lower reaches of Tarim River. Correspondingly, the natural vegetation has a favorable response to the elevation of the groundwater depth. The change of the natural vegetation has accordance with that of the groundwater depth. Such facts not only show that groundwater is a key factor to the growth of the native vegetation but also prove it is feasible that the degraded ecosystem can be restored and protected by the EWCP; (2) the results of analysis of the spatial-temporal response of the natural vegetation to watering reveals that the beneficial influence of the EWCP on the ecosystem in the lower Tarim River is a long-term process; (3) in terms of the function and structure of ecosystem after watering in the lower reaches of Tarim River, the EWCP does not still reach the goal of ecological restoration at a large spatial scale at present. Based on such monitoring results, some countermeasures and suggestions for the future restoration strategy are proposed so as to provide a theoretical basis for restoring and protecting the ecosystem in Tarim River, and meanwhile it can also provide some scientific references for implementing the similar ecological projects in other areas.  相似文献   

2.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

3.
Based on data collected over 2 years of monitoring the lower reaches of the Tarim River, the groundwater table depth was divided into six classes; 0 to 2 m, 2 to 4 m, 4 to 6 m, 6 to 8 m, 8 to 10 m, >10 m. We investigated the vegetation in this area to measure the influence of groundwater table depth on plant diversity and species ecological niche. The results indicated that plant diversity was highest at the 2 to 4 m groundwater table depth, followed by that at 4 to 6 m, and then that at 0 to 2 m. When the groundwater depth dropped to below 6 m, species diversity decreased dramatically, and the slope of Hill's index tended to level off. The ecological niche of the major species in this area initially expanded as the groundwater level dropped. The widest niche appeared at the 4 to 6 m groundwater table depth and gradually narrowed with deepening groundwater. Ecological niche analysis also revealed that the 4 to 6 m groundwater table depth was associated with the lowest degree of niche overlap and the richest variety of species. Our findings indicate that in the lower reaches of the Tarim River, the groundwater table depth must be a minimum of 6 m for vegetation restoration; it should be maintained at 2 to 4 m in the vicinity of the water path, and at 4 to 6 m for the rest of this arid area.  相似文献   

4.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   

5.
水生植被在湖库生态系统中发挥稳定沉积物、净化水质、平衡水生生态系统等作用,监测水生植被变化对湖库生态环境的监测具有重要意义。梳理了国内外利用高光谱、多光谱光学卫星遥感数据提取湖库水生植被的方法,尤其是针对其中涉及的阈值确定问题进行总结分析,介绍了典型研究区水生植被时空分布和变化以及与水质的关系,最后给出一些水生植被遥感监测的展望。  相似文献   

6.
Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.  相似文献   

7.
海绵城市建设是推动绿色低碳城市建设及可持续发展的重要保障措施,可以有效解决城市内涝、水资源短缺等问题,对于城市生态文明建设具有重要意义。以北京城市副中心点、线、面3种不同类型海绵体作为研究对象,利用2018年5—9月枯、丰水期采集到的345组地表水和地下水同步连续监测数据,分析了典型海绵体的地下水水化学特征及其形成机制,探讨了不同含水层之间的水力联系。同时,以Cl-为指示因子,结合其他水化学指标,研究分析了典型面状海绵体地下水与地表水之间的交互作用及影响程度。结果显示:在垂向上,埋深10 m和20 m含水层地下水之间联系密切,且受大气降水影响明显;埋深50 m和80 m含水层组地下水与其他含水层组无明显水力联系。在平面上,线状及面状海绵体地表水对地下水的影响距离为80~100 m;随着地层埋深的增加,地表水对地下水的影响程度减弱。  相似文献   

8.
The construction of the Almaraz nuclear power plant in Spain in the 1970s posed interesting environmental problems concerning the construction of a cooling reservoir (Arrocampo reservoir) to cool the steam condensers and the consequent heating of the reservoirs water. The socio-political context forced decision makers to set up a project for the monitoring and management of the environmental impacts derived from the construction and operation of the power plant. Numerous scientific and technical specialists collaborated with the representatives of social groups towards two goals: the improvement of the biodiversity and of the efficiency of the cooling system. These goals involved the monitoring and managing of the system with respect to different biological aspects, mainly limnology, ichthyology, avian fauna and vegetation. The management plan yielded numerous results. The control of the water eutrophy is one of the most important due to its repercussion on the rest of the ecosystem, especially the fish fauna. The development of the shore vegetation slowly increased the patchwork nature of the reservoir, leading to a greater diversity of the avian species. This paper describes the monitoring and management of the Arrocampo ecosystem, the condition before and after the construction of the reservoir and the results obtained concerning some biological communities.  相似文献   

9.
论北方森林、农业、矿业开发生态环境监测指标   总被引:1,自引:0,他引:1  
黑龙江省地处“东北亚”环境敏感区 ,具有独特的北方生态环境。它的针叶林生态系统 ,针阔叶混交林生态系统 ,温带草原生态系统 ,以及湿地生态系统等 ,都是我国代表性的植被生态系统。这些生态系统的生物多样性 ,以及生物种群和数量也是我国最丰富的地区之一。探索北方生态环境监测指标 ,开展生态环境监测 ,为主管部门和各级政府及时提供决策依据 ,对加快生态环境状况的改善 ,减少自然资源的退化 ,促进地方经济持续稳定的发展具有十分重要的意义。论述了生态环境监测指标的确定原则 ,探讨了农业和矿业开发生态环境监测指标  相似文献   

10.
为了解塔里木沙漠公路防护林生态工程对地下水位的影响,在该工程第69#灌溉水源井处设置观测场,通过多个观测井的非稳定流抽水试验,观测井中地下水位的变化情况,确定了研究区域的含水层渗透系数K=13.317m/d、抽水影响半径R=332.04 m。分析了地下水位降落"漏斗"和水位下降、上升随时间和空间的变化规律:在2个抽水应力期内,水位急速下降和上升过程均可在抽水试验开始后的11 min内完成,随着时间的累积,变化趋势逐渐缓慢;抽水结束后,水位可恢复到初始水平。因此,研究认为塔里木沙漠公路防护林生态工程灌溉期抽水不会引起天然地下水位的持续下降,这将为沙漠公路沿线地下水资源的可持续利用和防护林生态工程整体的稳定性及长久运行提供一定的理论依据。  相似文献   

11.
科学监管评价生态保护红线区生态环境是合理利用自然资源和充分保护生态环境的基础,对推动国家生态文明建设具有重要意义。该研究基于“天-空-地”一体化获取多源数据,结合GIS和RS空间分析,从生态系统格局和质量、人类活动、环境限制4个方面选取25个指标,构建了生物多样性维护生态保护红线区监管评价体系,并以泰山生态保护红线区为例进行分析研究。结果表明:2000—2015年,研究区生态系统格局、生态系统质量、人类活动状况3个分指数得分及生态环境综合得分均呈现先降后升的趋势,就综合得分而言,2000—2005年、2005—2010年得分降幅分别为18.73%和5.24%,2010年得分最低(41.97分),而2010—2015年得分增幅为81.63%,2015年得分为76.23分,生态环境综合得分评价等级由Ⅱ级升为Ⅰ级。其中城乡居民和工矿用地面积占比、生态系统破碎度和分离度、植被生物量是影响研究区生态环境的关键指标,相关部门应加强对研究区边界处人类活动的监管,并注重生态系统完整性和植被生长状态的保护。该监管评价体系具有较强的实践性、科学性和可操作性,可为生态保护红线区的监管评价提供新思路。  相似文献   

12.
石油石化企业的含油物质泄漏进入地下水,会对生态环境造成负面影响。通过构建地下水井模型,比选不同原理的挥发性有机物(VOCs)检测传感器,建立了基于VOCs浓度反演的地下水中含油物质泄漏原位实时在线监测方法。研究发现,常规水质六参数传感器对含油物质泄漏的响应会产生滞后现象,在实时预警监测地下水井中含油物质时可不安装常规水质六参数传感器,节约企业污染防控监测成本。将该方法应用于企业现场进行原位实时监测,当实时监测值超过数据监控平台预警阈值时,系统会发出警报,实现了地下水井中含油物质泄漏实时预警监测。该监测方法具有响应速度快、准确性高、成本低、监测过程简单等优势,将帮助企业实时掌握地下水污染状况,提高地下水污染防控预警效率。  相似文献   

13.
More and more visitors are attracted to protected areas nowadays, which not only bring about economic increase but also seriously adverse impacts on the ecological environment. In protected areas, trails are linkage between visitors and natural ecosystem, so they concentrate most of the adverse impacts caused by visitors. The trampling problems on the trails have been received attentions in the tremendous researches. However, few of them have correlated the environmental impacts to trail spatial patterns. In this project, the trails were selected as assessment objective, the trampling problems trail widening, multiple trail, and root exposure were taken as assessment indicators to assess ecological impacts in the case study area Jiuzhaigou Biosphere Reserve, and two spatial index, connectivity and circularity, were taken to indicate the trail network spatial patterns. The research results showed that the appearing frequency of the trampling problems had inverse correlation with the circularity and connectivity of the trail network, while the problem extent had no correlation with the spatial pattern. Comparing with the pristine trails, the artificial maintenance for the trails such as wooden trails and flagstone trails could prohibit vegetation root from exposure effectively. The research finds will be useful for the future trail design and tourism management.  相似文献   

14.
生态监测指标选择的探讨   总被引:2,自引:2,他引:0  
为了维持自然生态环境与人类社会协调、可持续发展,需要对生态系统的状态、演化趋势等进行生态监测。该文以水生态系统为例,从生态系统的组成、结构和功能角度出发,分析比较了不同类型的生态监测指标,提出从生态完整性角度对来描述和评估生态系统状况,开展生态监测和生态评价工作。以水源地水库生态监测为例,阐述了生物完整性指数的应用效果,表明基于生态完整性的生态监测工作是可行有效的。国内外的相关应用与研究均表明,我国推广开展基于生态完整性的生态监测评价工作是完全可行的,具有广阔的应用前景,将极大地推动我国监测工作的发展。  相似文献   

15.
In the study, we analyze and assess quantitatively the spatial pattern of vegetation and its ecological degradation information in the Honghe National Nature Reserve (HNNR), a Ramsar-designated site in Northeast China. Statistics from historical survey data are used to measure the degradation of marshes over time and changes in the hydrological regime. Long-term statistical data are also employed to analyze both natural and human impacts on these changes. Both the wetland degradation model and its mechanisms are discussed in this paper. The research finds that the loss of water and other types of degradation in the vegetation habitat caused by the rapid deterioration of the hydrological regime has threatened the status of HNNR as a “storage area of natural genes.” Scientifically constructed strategies are urgently required to ensure sustainable economic benefits that do not adversely affect this nature reserve.  相似文献   

16.
The Little Missouri National Grasslands (LMNG) of western North Dakota support the largest permitted cattle grazing use within all lands administered by the USDA, Forest Service, as well as critical habitat for many wildlife species. This fact, coupled with the need to revise current planning direction for range allotments of the LMNG, necessitated that a broad-level characterization of ecosystem integrity and resource conditions be conducted across all lands within the study area (approximately 800,000 hectares) in a rapid and cost-effective manner. The approach taken in this study was based on ecological classifications, which effectively utilized existing field plot data collected for a variety of previous inventory objectives, and their continuous spatial projection across the LMNG by maps of both existing and potential vegetation. These two map themes represent current and reference conditions (existing vs. potential vegetation); their intersection allowed us to assign various ecological status ratings (i.e., ecosystem integrity and resource condition) based on the degree of departure between current and reference conditions. In this paper, we present a brief review of methodologies used in the development of ecological classifications, and also illustrate their application to assessments of rangeland health through selected maps of ecological status ratings for the LMNG.  相似文献   

17.
The Chobe River, characterized by an unusual flood pulsing regime and shared between Botswana and Namibia, lies at the heart of the world’s largest transfrontier conservation area (the Kavango–Zambezi Transfrontier Conservation Area). Significant ecological changes and vegetation conversions are occurring along its floodplains. Various scenarios for agricultural and urban water use are currently being proposed by the government of Botswana. However, the understanding of the river’s annual flow regime and timing of the relative contributions of water from three different sources is relatively poor. In light of past and future climate change and variability, this means that allocating water between ecological flows and economic and domestic uses will become increasingly challenging. We reconstruct the inundation history in this basin to help ease this challenge. This paper presents a spatiotemporal approach to estimate the contribution of water from various sources and the magnitude of changes in the flooding extent in the basin between 1985 and 2010. We used time series analysis of bimonthly NOAA AVHRR and NASA MODIS data and climatologic and hydrologic records to determine the flooding timing and extent. The results indicate that between 12 and 62 % of the basin is flooded on an annual basis and that the spatial extent of the flooding varies throughout the year as a function of the timing of peak discharge in two larger basins. A 30-year trend analysis indicates a consistent decline in the average monthly flooded area in the basin. The results may prove useful in future water utilization feasibility studies, in determining measures for protecting ecological flows and levels, and in ecosystem dynamics studies in the context of current and future climate change and variability.  相似文献   

18.
Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.  相似文献   

19.
Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches.  相似文献   

20.
Several case histories illustrate national park air issues and responses in Canada. These examples include: acidification studies and establishment of a multiparticipant monitoring programme at Kejimkujik; studies of smoke at campgrounds in Jasper, La Mauricie and Forillon, its effect on health, and the management of visitors and firewood supply to mitigate these risks; and estimates of emissions from through-traffic in Yoho. From these cases and from reviews of the secondary literature, we can identify air issues that affect the maintenance of ecological integrity in national parks. These issues are: forest fires and smoke management; defining goals for ecosystem restoration; representation of natural regional conditions; visitor health and amenity; acidification; pesticides; eutrophication from airborne nitrates; permafrost melting; and UV-B. In June 1995, an International Air Issues Workshop brought together representatives from Canadian and U.S. national parks and other selected agencies. They ranked the air issues affecting national parks, producing quite an eclectic list. From the most to least serious issue, they are: acidification, toxics, visibility impairment, UV-B, smoke management, oil and gas development, fugitive dust, global warming, overflights, light pollution, noise and odour. Note that atmospheric change is only one among a group of stresses affecting national parks. Of 28 stresses recognized as significant for national parks in 1992, acid precipitation ranked 8th and climate change 23rd. Petrochemicals, 17th, pesticides, 18th and heavy metals, 21st, may be partly airborne. The 1995 workshop made several recommendations applicable to Parks Canada, from which those related to research and monitoring needs have been extracted. The air monitoring needed most by national parks is of suspended particulate and visibility. This is in response to human health and amenity concerns and international treaty obligations. The long-term protection of natural sites in national parks provides opportunities for other agencies to monitor ambient air quality and ecosystem responses, for example through the installation of under-canopy monitoring towers. The air research most needed in national parks is the modelling of natural landscapes and vegetation complexes in response to climate change. This follows from the primary purpose of each national park, to maintain the ecological integrity of an area selected to represent a natural region. The principal air research opportunities for other agencies in national parks are probably intensive instrumentation and sampling over several years to examine the air-vegetation-soil transfers of nutrients, pollutants and radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号