首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气候变化与剧烈的人类活动正深刻地影响着全球水循环系统,河川径流作为水循环系统中的重要组成部分,也因此发生了显著的变化。为此,以太湖上游西苕溪流域为典型,应用累积距平、线性趋势分析及流量历时曲线等方法,分析1972~2015年流域内的水文气象变化趋势;基于累积量斜率变化分析方法与气候弹性模型,定量揭示降水与人类活动对流域径流变化的贡献率。研究结果显示:(1)1972~2015年间流域年径流量呈减小趋势,并且在1999年发生突变,以此将时间序列划分为基准期与变异期两个阶段。变异期流域年均径流量减少约11.76%,减少幅度较大。(2)流域降水量年际变化趋势并不显著,与基准期相比,变异期年均降水减少约1.43%,减少幅度较小,但流域径流对降水变化敏感。汛期降水量占年降水量比重减少,降水的年内分配逐渐坦化,一定程度上使得产流减少。(3)根据累积量斜率变化率分析方法,降水与人类活动对西苕溪流域径流减少的贡献率分别为26.45%和73.55%,由气候弹性模型计算得出二者的贡献率分别为23.52%与76.48%。两种计算方法结果较为接近,均表明人类活动是导致西苕溪流域径流减少的主要因素。  相似文献   

2.
以韩江上游梅江的一级支流五华河为研究区域,选取近30a来的径流、泥沙和降雨数据,运用累积滤波器、Mann-Kendall、R/S、降水-径流双累积曲线等多种统计模型方法,分析径流、泥沙的年际变化特征、突变和相关关系,并在受人类活动和气候变化影响的基础上,探讨径流、泥沙的变化规律以及贡献率。结果表明:(1)径流年际变化总体略呈下降趋势,但趋势不明显;输沙量则表现出显著下降的趋势;(2)未来年径流量和输沙量可能呈现持续减少的趋势;(3)径流量在1981~1985年、1997~2001年和2004~2008年这3个时段内发生突变;输沙量在1987年发生突变;(4)单位水流的含沙量较少,河床基本处于冲刷状态;(5)降水对径流量变化的贡献率为73%,人类活动对径流量变化的贡献率为27%;输沙量快速减少的变化中,气候变化的贡献率为21%,人类活动的贡献率为79%。可见降水是五华河流域径流量变化最重要的影响因素,而人类活动是输沙量变化最重要的影响因素。  相似文献   

3.
气候变化对中国南方水稻产量的经济影响及其适应策略   总被引:5,自引:0,他引:5  
文章通过构建经济-气候模型(简称C-D-C模型),运用计量经济模型实证分析气候变化对南方水稻产量的影响,并对未来气候变化情景的影响进行了模拟评估。结果表明,气候对南方地区水稻产量有显著负影响,且气候对各区域影响存在差异,降水对华南、华中和华东地区有负的作用,而对西南地区有一定正影响;温度对西南、华南、华东和华中地区都有负的影响,未来气候变化情景对南方水稻产量的影响以减产为主,应引起政府和农户的高度重视。最后,根据实证分析结果,提出了南方地区水稻生产适应气候变化的对策建议。  相似文献   

4.
利用1961~2010年全国大陆地面468个气象台站的气温、降水和日照时数等资料,采用Jones等提出的计算区域平均气候时间序列的方法对全国数据进行加权平均处理,采用线性趋势、反距离加权插值、Morlet小波分析、Mann Kendall法,分析了我国大陆地面近50 a来各气候要素的变化特征。研究表明:年平均气温、年平均最低气温、年平均最高气温、年极端最低气温、年极端最高气温均呈显著上升趋势,年平均温度差、年极端温度差、年平均日照时数均呈显著减少趋势;年平均气温、年平均降水、年平均最低气温、年平均最高气温、年极端最低气温、年极端最高气温、年平均温度差、年极端温度差、年平均日照时数分别存在14、26、14、14、25、16、26、25和25 a左右的变化主周期;在005的置信度水平下,年平均最高气温、年极端最低气温、年极端最高气温、年极端温度差、年平均降水和年平均日照时数均发生突变,其分别在1996、1981、1997、1975、1983和1982年发生突变,其余要素均未发生突变。分析还发现,各气候要素的变化主周期分别存在一定的相似性,突变时间也存在一定联系  相似文献   

5.
为进一步明晰南方不同类型草地的碳源汇关系,预测未来气候情景下可能的碳循环特征,利用本地参数化的BIOME-BGC模型对2001~2010年低山丘陵草原化草甸、典型草山草坡和典型山地草甸样地净初级生产力(NPP)与净生态系统生产力(NEP)进行了模拟估算。不同类型草地的NPP和NEP 10年间变化趋势不同,低山丘陵草原化草甸、典型草山草坡和典型山地草甸的NPP平均值分别为357.17、232.4和191.96gC/(m2·a);NEP的平均值分别为3.25、21.28和81.96gC/(m2·a)。3种类型草地NPP与温度之间存在显著的正相关关系,NEP与温度之间存在着显著的负相关关系;本模型模拟的NPP和NEP与年平均降水量之间相关性不明显。未来气候情景C1P-1T1下(CO2浓度倍增,年均温增加2℃,降水减少10%),低山丘陵草原化草甸样地NPP增加26.93%,NEP增加160%;典型草山草坡样地NPP增加62.20%,NEP增加153%;典型山地草甸样地NPP增加135%,NEP增加206%。3种南方草地类型在未来气候情景下都将有一定的碳汇增长潜力,其中以典型山地草甸的碳汇潜力最为明显,与降水量相比受温度变化的影响相对较大。  相似文献   

6.
选取南水北调西线工程引水区5个水文站与相应气象站近50 a径流、降雨、温度、日照时间序列资料,首先对自相关性显著水平5%的序列进行去白化处理,运用Mann Kendall法进行趋势检验和突变分析,并通过Spearman法和双累积曲线图形法对结果进行验证。此外,运用Pearson方法分析径流与各气候因子间的相关性。结果表明:50 a来,引水区年径流量变化趋势总体不明显,但近10 a来,除直门达水文站外,其余4个站有进一步减少的趋势;雨量和日照时间变化趋势并不明显,温度有较显著升高。总体而言,气候变化是流域径流量变化的主要影响因素,未来径流量变化还需从气温、降水、径流、冰川等时空分布特性综合研究  相似文献   

7.
环洱海地区气候变化特征研究   总被引:3,自引:0,他引:3  
环洱海地区是云南省具有高原湖泊生态脆弱区、民族文化多元融合区和乡村经济发展活跃区等多重叠合特征的典型区域,是全球气候变化影响的敏感区和脆弱区。以环洱海地区1951~2014年6个基本站点的逐年平均气温、极端最高气温、极端最低气温、降水量、最大日降水量和日降水量≥0.1 mm日数资料为基础。采用线性倾向估计、Mann-Kendall趋势检验、Morlet小波分析和R/S分析等方法,研究了环洱海地区气候变化规律。结果发现:自1951年以来,环洱海地区年均气温和极端最低气温呈现出升高的趋势,而极端最高气温则呈现降低的趋势,变化速率分别为0.07℃/10 a、0.03℃/10 a和–0.14℃/10 a,对于年降水量、最大日降水量和降水日数而言,三者均为减少趋势,速率分别为–12.85 mm/10 a、–1.09mm/10 a和–1.73 d/10 a;环洱海地区年均气温、极端最高和极端最低气温均没有发生突变,年降水量和降水日数在2010年发生了一次减少突变,而最大日降水量则没有检测到突变的年份;环洱海地区年平均气温和年降水量在长时间尺度上的周期性变化最为显著,分别存在30 a和33 a左右的周期变化,并贯穿整个研究时段,而短时间尺度上的周期变化局域性特征突出;从未来演变趋势来看,年平均气温和极端最低气温将维持升温趋势,而极端最高气温则将持续降低趋势,年降水量继续减少的趋势未来将会逆转,但最大日降水量和降水日数两者将持续减少的概率更大。  相似文献   

8.
采用中国1951—2010年659个站点的日值降水数据,以暴雨持续长短为标准对短和长历时暴雨计算,结果表明:在空间上,中国短历时暴雨量从1951到2010年呈现出由东南沿海向西北内陆梯次减少的现象,而长历时暴雨量则主要集中在广东、广西、海南等东南沿海地区。在时间上,中国年际和年代际短和长历时暴雨均呈现增加趋势。在降水贡献率占比上,1951—2010年中国总暴雨量占总降雨量以及总暴雨日占总降雨日的比例分别为6.1%—27.7%和0.6%—2.5%;同期中国短历时暴雨量在总暴雨量和短历时暴雨日在总暴雨日中的比例分别为75.9%—89.4%和75.6%—89.2%,短历时暴雨占主导地位;而长历时暴雨量在总暴雨量和长历时暴雨日在总暴雨日中的比例分别只占10.6%—24.1%和10.8%—24.4%。在降水贡献率变化趋势上,在1951—2010年间,中国总暴雨对总降雨的贡献率呈增加趋势,其雨量和雨日的贡献率趋势分别为2.1%/10a和0.2%/10a;短历时暴雨对总暴雨的贡献率也呈增加趋势,其雨量和雨日的贡献率趋势分别为0.5%/10a和0.4%/10a;而长历时暴雨对总暴雨的贡献率呈减少趋势,其雨量和雨日的贡献率趋势分别为-0.5%/10a和-0.4%/10a。以上结果表明中国降水在朝着极端化方向变化,短历时暴雨增多显著。  相似文献   

9.
鄱阳湖流域水文效应对气候变化的响应   总被引:1,自引:0,他引:1  
以鄱阳湖流域为研究区,以地表-地下耦合的分布式水文模型WATLAC为模拟工具,探讨流域水资源对气候变化的响应。水文模型以2000~2008年为模拟期,以流域河道日径流量来率定(2000~2005年)与验证模型(2006~2008年)并取得了满意的模拟效果。基于此,假定未来气候变化情景方案,通过径流量、土壤蒸发量和基流量来探讨气候变化对流域水资源的影响。结果表明,径流量与基流量对降雨变化有着较强的敏感性,而土壤蒸发量对温度变化的敏感性较强。在降雨一定条件下,水文变量均与气温变化近似呈线性关系;在气温情景一定条件下,水文变量均与降雨变化呈非线性关系。随着降水的减少,气温对径流、土壤蒸发和基流的影响也随之减弱;气温对上述变量的显著影响主要表现在降水增加的情况下。相同的气温变化情景下,降水增加比降水减少对径流量的影响更加显著,降水减少比降水增加对土壤蒸发量与基流量的影响更加显著,表明降水变化对水文变量有着不同程度和方向的影响作用。  相似文献   

10.
基于NDVI的重庆市植被覆盖变化及其对气候因子的响应   总被引:1,自引:0,他引:1  
运用美国NASA发布的MOD13Q1级产品16d最大值合成数据结合重庆市34个气象站点的气候资料,分析2000~2011年重庆市植被变化状况以及NDVI与主要气候因子温度、降水的相互关系。结果表明:12 a来重庆市年均NDVI呈增长趋势,但空间时间尺度上有所差异,从空间尺度上看NDVI增长区域主要分布在东北、东南、西南部区域,NDVI降低区域主要分布在重庆主城区、区县城区及长江沿岸、三峡库区消落带;从时间尺度上看,春季、秋季NDVI有一定幅度的增长,夏季NDVI趋于稳定,冬季NDVI有所下降;NDVI在年际尺度上与温度和降水相关并不显著,但在月份尺度上与气温降水均呈显著相关关系,且与气温相关性大于降水  相似文献   

11.
作为重要的水文气象参数,参考作物蒸散量(ET0)在全球生态系统中发挥重要作用。为深化认识湿润气候区ET0变化,基于湖南省87个气象站1960~2015年逐月气候资料,应用Penman Monteith(P M)模型估算ET0,利用线性趋势、Mann Kendall检验、反距离加权插值等分析了ET0及主要气候因子的时空变化,采取逐〖JP〗步回归函数来确定P M方程所涉及的气候因子对ET0变化的贡献。研究表明:年均ET0降幅为-3346 mm/10 a,〖JP+1〗日照时数和风速下降是ET0减少的主要原因,而相对湿度下降提高了ET0。春、夏、秋、冬四季ET0变化幅度分别为2966、-5451、-0922、-0207 mm/10 a,春季ET0增加是由相对湿度下降和最高气温上升引起的,夏、秋、冬三季ET0减少主要与日照时数和风速下降有关。风速、相对湿度、日照时数呈下降趋势,而气温、降水、湿润指数呈上升趋势,后者表明气候暖湿化趋势。气候变化背景下ET0显示出不同时间尺度(年、季)空间分布的多样性  相似文献   

12.
为揭示李仙江流域LUCC和气候变化对径流变化的影响,基于SWAT模型,通过设置不同情景,定量分析了不同土地利用类型和气候要素对流域内径流的影响,并结合RCP4.5、RCP8.5两种气候情景对流域未来径流的变化进行了预估。结果显示:(1) SWAT模型在李仙江流域径流模拟中具有很好的适用性,可以用SWAT模型进行流域的径流模拟,率定期的模型参数R2、Ens分别达到0.74、0.73,验证期的模型参数R2、Ens分别达到0.63、0.63;(2) 单一土地利用情景显示,将农业用地转化为林地或草地,均会导致流域径流量的减少,而将林地转化为草地则会引起流域径流量的增加,农业用地、林地、草地三者对径流增加贡献顺序为农业用地>草地>林地。(3) 2006~2015年间李仙江流域的LUCC引起的月均径流增加幅度小于气候变化引起的月均径流减少幅度,李仙江径流的变化由气候变化主导。(4) 在RCP4.5和RCP8.5两种气候情景下,2021~2050年间李仙江流域径流均呈减少趋势,减少的速率分别为3.6和2.15亿m3/10 a,这与1971~2015年间,流域实测径流减速为6.7亿m3/10 a的变化趋势一致,但这两种情景下,径流的减少趋势有所降低,分别为1971~2015年减速的53.7%、32.1%。  相似文献   

13.
以全球变暖为主要特征的全球气候变化对自然环境和社会经济发展产生了巨大影响。长江流域作为中国最大的流域,对气候变化的影响非常敏感,对未来气候变化的预测可以为应对未来的不确定性提供重要的科学依据。为了更准确地预测长江流域未来的温度和降水,针对第六次国际耦合模式比较计划(CMIP6)对长江流域26个气候模式进行评估,选择并校正性能更好的模式,讨论了长江流域未来的气温和降水。主要结论如下:(1)气候模式在温度上的模拟效果优于降水,在时间尺度上表现为月尺度>日尺度>年尺度。温度模拟存在一定程度的低估,降水模拟存在一定程度的高估。(2)区域尺度利用气候模式进行研究工作前的评估和校正是必要的,经过评估优化和季节校正后,数据的精度得到了显著提高,分位数映射法可以应用于气候模型数据的校正,但对于极端降水和温度的校正仍存在一些不足。(3)在SSP1-2.6情景中,未来温度和降水变化将在一段时间内持续不稳定增加,然后随着时间趋于稳定。在其他3种情景下,变化的速度随着时间的推移而加快。未来长江流域的降水和气温在所有情景下都将高于历史时期,表现为SSP5-8.5>SSP3-7.0>SSP...  相似文献   

14.
基于大渡河流域1961~2010年逐日降水数据资料,运用Mann-Kendall非参数检验、Morlet小波分析法,分析了近50a来大渡河流域极端降水事件的时空变化特征。结果表明,大渡河流域的极端降水指数均呈现出相对稳定的波动增加;多年平均值均呈现出由西北向东南方向逐渐增多的分布特征,变化趋势的空间分布存在着区域差异:除强降水日数外,其他极端降水指数均呈现下游增加,上游减小的变化趋势,大渡河流域极端降水与年降水量变化趋势密切相关。大渡河流域各指数突变特征不一致,1d、5d最大降水量突变年集中在1974~1976年前后;强降水日数、极端降水量及极端强降水日数发生突变的年份分别为1984年、1979年及1977年,且突变后呈现明显的增大趋势。大渡河流域极端降水指数周期特征较复杂,但普遍存在5~10a的年际振荡周期和20~25a的年代际振荡周期,且25a是最强的主周期。  相似文献   

15.
为揭示川滇地区气候特征与旱涝灾害趋势,以川滇地区70个气象站点1961~2011年的逐月气温、降水资料为基础,采用线性回归、五年滑动平均、M K突变检验、反距离加权空间插值、Z指数法、Morlet小波变换等方法,对川滇地区气候变化特征与旱涝灾害进行了分析。结果表明:近51 a川滇地区气温以021℃/10 a的速率增加;降水量以1076 mm/10 a的速率减少;尤其是20世纪90年代末期以来正经历着以增温和变干为趋势的气候变化特征,气候暖干化趋势明显。近51 a川滇地区年旱涝灾害总的趋势是向干旱发展,以2000年为转折点,2000年以前该区多涝灾,2000年后多旱灾,这与该区的气温与降水变化一致,气候暖干化的结果直接导致了旱灾加剧。川滇地区春、冬两季旱涝年际周期变化规律强,Z指数呈上升趋势,降水量增加;夏季旱涝周期变化十分显著,旱涝灾害程度加剧,干旱化趋势明显;秋季旱涝变化周期性不强,呈弱干旱化趋势发展  相似文献   

16.
采用经统计降尺度与偏差订正的4种全球气候模式(GFDL-ESM2M,HadGEM2-ES,IPSL-CM5A-LR和MIROC5)1861 ~ 2005年的历史气候模拟试验和2006 ~ 2018年的RCP4.5情景预估资料,驱动SWAT水文模型,分析了1861~2018年乌江流域气候变化特征及其对径流的影响.同时,采用1861~2018年4种全球气候模式在工业革命前控制试验(piControl)数据,对比分析了"自然"和"人为+自然"强迫下流域气候及径流变化的差异.研究结果表明:(1)1861~2018年乌江流域平均气温呈现显著上升趋势,气温倾向率为0.03℃/10a;降水呈显著下降趋势,降水倾向率为-10.9 mm/10a.流域主要水文控制站武隆站年平均流量呈显著下降趋势,倾向率为-20.8 m3/s/10a;四季平均流量倾向率分别为-10.8、-46.1、-20.1、-5.9 m3/s/10a,均呈显著下降趋势;枯水极值流量倾向率为-7.6 m3/s/10a,丰水极值流量倾向率为-43.5 m3/s/10a,下降趋势显著.(2)"自然"强迫控制试验下,1861~2018年乌江流域年平均气温无明显变化趋势;降水则为不显著上升趋势,倾向率为1.9 mm/10a;年平均流量呈微弱上升趋势,倾向率为0.1 m3/s/10a;四季平均流量倾向率分别为-1.1、-18.6、11.0、8.9 m3/s/10a,春季平均流量不显著下降,夏季显著下降,秋季不显著上升,冬季显著上升;枯水极值流量倾向率为2.5 m3/s/10a,丰水极值流量为-9.5 m3/s/10a,变化趋势均不显著.(3)相对"自然"强迫序列,人类活动引起的气候变化导致1861 ~ 2018年乌江四季平均流量分别减少7.1%、9.7%、8.7%、11.9%;枯水与丰水极值流量分别下降9.3%和5.0%.  相似文献   

17.
基于长江中下游地区1961~2100年区域气候模式COSMO-CLM(CCLM)模拟与1961~2005年气象站观测的逐日降水数据,通过统计计算年降水量、强降水量、暴雨日数和极端降水贡献率4个极端降水指数,研究全球升温1.5℃与2.0℃情景下,长江中下游地区极端降水的时空变化特征。结果表明:(1)全球升温1.5℃情景下,年降水量相对于1986~2005年减少5%,强降水量、暴雨日数和极端降水贡献率分别增加7%、33%和4%;概率密度曲线表明,年降水量均值下降,强降水量、暴雨日数和极端降水贡献率均值上升,极端降水方差增大;年降水量、强降水量和暴雨日数在空间上表现为南部增加北部减少,极端降水贡献率则相反。(2)全球升温2.0℃情景下,年降水量下降3%,强降水量、暴雨日数和极端降水贡献率分别上升15%、46%和15%;年降水量均值稍有减少且方差稍有上升,强降水量、暴雨日数和极端降水贡献率均值和方差明显增加;年降水量减少区域位于长江主干以北,强降水量、暴雨日数和极端降水贡献率表现为绝大部分地区增加的空间变化特征。(3)全球升温由1.5℃至2.0℃时,年降水量、强降水量、暴雨日数和极端降水贡献率分别增加3%、7%、10%和11%;随升温幅度的增加极端降水均值和方差上升;极端降水呈增加态势的范围扩大。因此,努力将升温控制在1.5℃对降低极端降水的影响具有重要意义。  相似文献   

18.
未来50年鄱阳湖流域气候变化预估   总被引:8,自引:0,他引:8  
据 ECHAM5/ MPI OM模式在3种排放情景(SRES高排放A2,中排放A1B,低排放B1)下所做的21世纪前50年气候变化预估试验得到的数据,研究鄱阳湖流域2001~2050年气温和降水相对于目前气候(1961~1990年)的可能变化。结果表明:①未来50年气温在3种排放情景下都将迅速增加,远远高于1990s的增加幅度和速度。A1B情景温度增加最明显,平均气温变化达到162°C。②降水量变化相对复杂,前30年主要为减少趋势,A2情景下减少幅度最大,2020s年均降水量减少了67%;后20年降水量增加,B1情景增加最显著,2030s年增加幅度达到108%。③根据预估的各季节变化结果,1~3月和 4~6月降水量增加;而降水减少主要在7~9月和10~12月,则赣江流域类似于2003~2005年的伏旱、秋旱连冬旱的情况将可能阶段性出现,并在2011~2030年加强。④降水量的空间分异非常明显,东部变化大于西部,南部变化大于北部。⑤如果2001~2050年在A2或A1B情景下,降水序列存在20a的周期振荡;在B1情景下,存在30a的周期振荡。人类排放增加可能弱化振荡强度,并使周期发生变化。  相似文献   

19.
三峡库区21世纪气候变化的情景预估分析   总被引:3,自引:0,他引:3  
利用政府间气候变化委员会第四次评估报告提供的新一代气候系统模式的模拟结果(IPCC AR4),通过多模式集合方法预估分析了3种排放情景(高排放SRES A2、中等排放SRES A1B和低排放SRES B1)下三峡库区21世纪气候的可能变化。结果表明,挑选模拟性能较好的模式进行的多模式集合对库区气温和降水的变化具有较好的模拟能力,21世纪库区气候总体有显著变暖、变湿的趋势,年平均气温变暖趋势为2.1~4.2℃/100 a,年降水增加趋势为6.1%~9.7%/100 a。就季节变化而言,冬季的变暖幅度最大,降水增加幅度最大。库区年平均气温在21世纪将持续呈上升趋势,而年降水在21世纪前期有减少趋势,在中期和后期逐渐增多。在A2、A1B和B1排放情景,21世纪后期气温分别比常年偏暖3.7、3.3和2.2℃,年降水分别比常年偏多4.4%、5.5%和3.5%。  相似文献   

20.
我国南方地区50 a冬季降水和相对湿度特征分析   总被引:1,自引:0,他引:1  
根据中国地面气候日值数据集资料,利用气候趋势系数、气候倾向率等方法,研究了我国南方地区冬季50 a降水和湿度的时空变化特征,并运用基尼系数对降水均匀性的空间分布进行了分析。结果表明:降水和相对湿度分布皆自西北向东南递增,最大中心位于长江以南附近内陆区域,最小值基本位于高原。降水强度整体呈现增加趋势,在沿长江附近区域以及云南部分地区增强明显,最大气候倾向率为1.0 mm/d/10 a左右,有明显的突变时间,为1979年;降水量呈微弱的增加趋势,其中云贵和川渝局部区域降水量呈减少趋势,为-3 mm/10 a左右,没有明显的突变时间;降水日数在长江以南局部区域及云贵区域显著减少,其中云南的西南地区为最小气候倾向率-10 d/10 a,明显突变时间为1980年;相对湿度表现出一定的局地增减趋势,长江以北(南)主要呈微弱增加(减少)趋势,云南南部减小趋势显著;相对湿度和降水呈明显的正相关,其中与降水量和降水日数相关系数高达0.784、0.753。降水量基尼系数的空间分布与降水分布相似,只是降水分布的大(小)值中心为基尼系数小(大)值中心,不同年代及冬季不同月份的降水量基尼系数大(小)值区域范围有所增减。总的来看,我国南方冬季中部和东部大部分区域为降水均匀区,西南高原区域为不均匀区。 关键词: 南方地区;冬季;降水;相对湿度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号