首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Cu^2+和Cr^6+对活性污泥处理系统的冲击影响研究   总被引:5,自引:0,他引:5  
摘要以完全混合活性污泥反应器为试验系统,在作为处理对象的实际餐饮废水中添加Cu^2 和Cr^6 ,分批试验发现:添加单一Cu^2 的Ⅰ^#系统中,随着Cu^2 浓度的增加,污泥浓度及生物相无明显的变化,Cu^2 的去除率比较稳定,在90%左右波动;在同时添加Cu^2 和Cr^6 的Ⅱ^#系统中,污泥量明显减少,生物相发生变化,Cr^6 浓度达到4.8mg/L,污泥对Cr^6 和Cu^2 的去除率分别降至27.50%和37.89%。可见,Cr^6 对活性污泥系统的毒性远大于Cu^2 。  相似文献   

2.
含盐量对好氧颗粒污泥形成过程的影响   总被引:2,自引:0,他引:2  
研究了不同含盐梯度废水下好氧颗粒污泥的形成过程.在反应器 R1 中,其含盐量一直维持 1%,其颗粒成中空结构;在 R2、R3 中,其含盐量由 1%提高到 2.5%时,其颗粒发生膨胀破碎;在 R3 中,其含盐量由 2.5%提高到 5%时,其颗粒由疏松变为密实.另外,溶解氧消耗速率(SOUR)随着含盐量的增加而降低.在含盐量为 2.5%时,好氧颗粒污泥的耐盐菌与非耐盐菌均处于不利的生长环境,此时好氧颗粒污泥处于最不稳定的状态,容易发生解体.  相似文献   

3.
废水处理工艺中抗生素类污染物的存在可能会对生物处理过程产生长期而深远的影响,为探明此类污染物对废水生物处理主体活性污泥性能等方面的影响,采用间歇培养法研究了活性污泥法处理污水时,抗生素类污染物的存在对活性污泥性能如胞外聚合物(EPS)、污染物处理能力、脱氢酶活性和群落结构的影响。结果表明,抗生素的存在会导致活性污泥的胞外聚合物总量及其主要组分蛋白质和多糖增加,以产生保护屏障;且由于污泥絮体解体,细胞破裂导致EPS中DNA和色氨酸含量增加。同时,由于蛋白质大量增加引起的表面负电荷的增加,使污泥疏水性增强,絮凝性能恶化;污泥絮体解体导致污泥颗粒变小,SVI也随之下降;在活性污泥脱氢酶活性急剧下降的同时,出水TOC迅速升高。此外,抗生素类污染物在抑制活性污泥中大部分细菌的同时,对部分菌群也有刺激生长作用,最终导致活性污泥生物群落结构的改变。四环素类抗生素对活性污泥的EPS和絮凝沉降性能的影响大于磺胺类,而对污水处理能力和群落结构的影响则不如磺胺类。抗生素类污染物的长期存在会对活性污泥沉降性能、絮凝性能、脱氢酶活性以及活性污泥群落结构等产生一系列负面影响,进而影响污染物去除效果,导致出水水质恶化。  相似文献   

4.
杨宏  姚仁达 《环境工程学报》2017,11(5):2660-2665
为实现氨氮氧化速率的提高,以污水处理厂A2/O工艺回流污泥为菌源,利用细菌发酵罐,通过间歇运行方式实现了硝化细菌菌群的筛选和富集。实验中通过调节系统pH值考察不同游离氨(FA)水平对氨氮氧化速率、亚硝酸盐积累和硝酸盐生成的影响,以及通过沉淀排水保留污泥,反应有效容积缩小,等同于污泥浓度提高的方式考察了硝化细菌浓度变化对氨氮氧化速率的影响。结果表明在一定氨氮底物浓度条件下适合的pH值是实现氨氮高速率氧化的重要条件,同时硝化细菌浓度是高氨氮氧化速率实现的物质基础。通过FISH检测,证明了所得培养物中,氨氧化和亚硝酸盐氧化细菌菌群(AOB和NOB)占有绝对数量优势。  相似文献   

5.
底泥修复中温度对微生物活性和污染物释放的影响   总被引:9,自引:1,他引:9  
通过分析底泥中微生物的酶活性以及污染物的释放规律,探讨了温度对河道底泥生物修复的影响.结果表明,底泥中微生物的脱氢酶、脲酶和磷酸酶的活性随着温度的升高而显著增大,但温度对纤维素酶的活性影响较小.4 ℃和10 ℃时底泥中污染物的释放量和微生物的酶活性均较低,水质较稳定;20~37 ℃时底泥中污染物的释放量明显增加,微生物的新陈代谢能力有较大提高,水体的自净能力较强.在各种因素的综合作用下,20~30 ℃是进行底泥生物修复的适宜环境温度.此外,当pH为9.0以及添加葡萄糖时,底泥中微生物均表现出较高的脱氢酶活性.  相似文献   

6.
研究了微磁场条件下pH冲击对处理低负荷葡萄糖废水的微氧活性污泥表面性质的影响。在pH=6.0和9.0的条件下对添加磁粉和无磁粉反应器微氧活性污泥进行15 d的冲击,而后调整pH=7.5进行5 d的恢复实验。对pH冲击下污泥絮凝能力FA、疏水性RH和表面电荷SC的变化情况进行考察,结果表明,有磁粉反应器的各项指标均优于无磁粉反应器。经过5 d的恢复实验,添加磁粉反应器污泥的各指标均能恢复到接近初始值,而无磁粉反应器污泥难以恢复到接近初始值。  相似文献   

7.
聚羟基烷酸(PHA)是微生物在不平衡营养条件下贮存的一种胞内聚合物,限磷和限氮两种方式均有助于活性污泥中的混合菌群合成PHA,研究考察了两种不同方式下活性污泥合成PHA的情况。实验结果表明,当C:N为125时,活性污泥中PHA的合成量达到细胞干重的59%;当c:P为750时,活性污泥积累的最大PHA含量占细胞干重的37%,说明限氮和限磷两种方式对活性污泥合成PHA均有很大影响,且限氮方式更有效。  相似文献   

8.
废水处理工艺中抗生素类污染物的存在可能会对生物处理过程产生长期而深远的影响,为探明此类污染物对废水生物处理主体活性污泥性能等方面的影响,采用间歇培养法研究了活性污泥法处理污水时,抗生素类污染物的存在对活性污泥性能如胞外聚合物(EPS)、污染物处理能力、脱氢酶活性和群落结构的影响。结果表明,抗生素的存在会导致活性污泥的胞外聚合物总量及其主要组分蛋白质和多糖增加,以产生保护屏障;且由于污泥絮体解体,细胞破裂导致EPS中DNA和色氨酸含量增加。同时,由于蛋白质大量增加引起的表面负电荷的增加,使污泥疏水性增强,絮凝性能恶化;污泥絮体解体导致污泥颗粒变小,SVI也随之下降;在活性污泥脱氢酶活性急剧下降的同时,出水TOC迅速升高。此外,抗生素类污染物在抑制活性污泥中大部分细菌的同时,对部分菌群也有刺激生长作用,最终导致活性污泥生物群落结构的改变。四环素类抗生素对活性污泥的EPS和絮凝沉降性能的影响大于磺胺类,而对污水处理能力和群落结构的影响则不如磺胺类。抗生素类污染物的长期存在会对活性污泥沉降性能、絮凝性能、脱氢酶活性以及活性污泥群落结构等产生一系列负面影响,进而影响污染物去除效果,导致出水水质恶化。  相似文献   

9.
以微纳米曝气为主要曝气方式,鼓风微孔曝气方式作对比,处理广西大学东校园景观湖湖水,考察微纳米曝气方式在污染景观水体中氧传质系数变化及其对污染物的去除效果。结果表明,对污染景观水体曝气过程中,微纳米曝气氧总体积传质系数高于鼓风微孔曝气,且与景观水的污染程度成负相关。微纳米曝气具有很好的氧传递性,平均气含率为1.09%。该曝气法对污染景观水体中多种污染物有良好的去除效果,实验结束时,微纳米曝气对化学需氧量(COD)、总磷(TP)、氨氮(NH4+-N)和总氮(TN)的去除率分别为67.59%、17.30%、70.20%和66.75%,水体中叶绿素a上升了14.03%,是一种有效改善景观水体水质的曝气方式。  相似文献   

10.
在0.3 m×0.3 m×0.36 m方形搅拌槽中初步探讨了不同的搅拌器类型、安装高度以及曝气强度对投加了沸石粉的高浓度活性污泥悬浮状态的影响,并根据固液悬浮理论确定了最佳的搅拌参数.同时,进行了不同搅拌速率下沸石对污水中氨氮的离子交换动力学研究.结果表明在无曝气的情况下,选用三叶推进式搅拌器,搅拌器离底高度为1/3搅拌器直径时所需要的临界搅拌速率最低.曝气有助于反应池中污泥的悬浮,对于30 g/L的污泥,当曝气强度由10 m3/(m2·h)增大1倍时,临界搅拌速率降低了50%.搅拌速率为120 r/min时,沸石对污水中氨氮的离子交换速率受膜扩散过程控制,当其增大为180 r/min时,其控制步骤为粒内扩散,沸石粉活性污泥达到完全均匀悬浮的临界搅拌速率不足以满足传质的要求.需增大一定程度.  相似文献   

11.
实际污水与模拟污水活性污泥系统的特性差异   总被引:2,自引:0,他引:2  
实验中经常采用人工配置的模拟生活污水,为了研究其与实际生活污水活性污泥系统的特性差异,采用2个序批式间歇反应器(SBR)进行平行实验(厌氧、好氧方式运行),系统地考察了在进水主要组分和运行参数相同的情况下,不同原水对活性污泥系统脱氮、除磷、比好氧速率、污泥絮体形态和出水水质等方面的影响。结果表明,模拟污水系统的硝化活性强于实际污水系统,两者的平均硝化速率分别为7.43 mg NH4+-N/(L.h)和5.55 mg NH4+-N/(L.h)。在前置厌氧段,模拟污水系统的释磷量比实际污水系统高出36.45%。两者在后续好氧阶段都能够充分吸磷。模拟污水系统的平均比好氧速率(SOUR)高达64.54 mg O2/(g MLSS.h),而实际污水系统的则只有32.81 mg O2/(g MLSS.h)。模拟污水系统的污泥絮体疏松,粒径小,形状不规则,沉降性差,沉后出水平均悬浮物浓度(SS)为20 mg/L;而实际污水系统的污泥絮体则密实、粒径大,沉降性好,沉后水十分清澈,SS几乎检测不出。  相似文献   

12.
天然沸石具有较大的孔隙率和比表面积,对氨氮有较强的选择性离子交换能力.运用天然沸石曝气生物滤池处理城市污水厂二级生化出水,结果表明,曝气生物滤池有良好的去除效果.在气水比为3∶1,水力负荷为1 m/h,温度>20℃情况下,沸石曝气生物滤池对城市污水厂二级生化出水COD去除率为12.7%,NH3-N去除率为96.6%;试验系统沿程微生物活性和微生物量呈现逐渐下降趋势,而单位生物量的生物活性沿程分布则与此相反;曝气生物滤池对水中污染物的去除主要集中在底部进水端部分,当水流达到距进水端上方105 cm时,曝气生物滤池对水中NH3-N的去除率已达86.8%(占氨氮总去除率的90%),COD的去除率为13.3%(占COD总去除率的67%).  相似文献   

13.
把pH值在线监测与药品自动投加系统与已开发的混合呼吸测量仪集成,组成自动呼吸-滴定测量仪,同时测得废水生物处理过程溶解氧(DO)、pH、氧气利用速率(OUR)和质子变化速率(HVR)。分别监测了只投加NH4+-N底物的活性污泥硝化过程和实验室脱氮除碳SBR曝气阶段的DO/pH响应,结果显示,两信号呈一定规律变化,在反应...  相似文献   

14.
好氧活性污泥法在污水处理中应用广泛.保持污泥活性,是良好处理效果的前提,也是运行控制的主要目标.活性污泥的呼吸速率,或者氧利用速率(oxygen uptake rate,OUR),能够指示污泥的活性变化.本研究开发的快速生物活性测定仪(rapid biological activity tester,RBAT),能够快速测定污泥活性参数,满足工程设计与运行的迫切要求.  相似文献   

15.
好氧颗粒污泥处理高浓度氨氮废水的研究   总被引:6,自引:0,他引:6  
在不同接种源污泥颗粒化过程中污泥理化性状对比研究的基础上,采用成熟好氧颗粒污泥处理高浓度氨氮废水,对其脱氮行为以及不同C/N条件下好氧颗粒污泥微生物的比耗氧速率、好氧颗粒污泥对氨氮的比降解速率随时间的变化等进行了研究.实验结果表明,在进水氨氮质量浓度较高(480 mg/L)、温度30℃左右的条件下,稳定运行15 d,氨氮的去除率维持在85%左右;进水氨氮的浓度越高,随着微生物对环境的逐渐适应,硝化菌的活性也逐步增加;随着进水氨氮浓度的提高,好氧颗粒污泥对氨氮的比降解速率也逐渐上升.  相似文献   

16.
采用单因子实验或响应曲面法分别研究了单一酶、复合酶以及复合酶-化学药剂联合的3种调理方式下污泥的脱水性能,并探讨了典型调理条件下污泥的Zeta电位、粒度和水分组成等变化特征。研究结果表明,复合酶、十六烷基三甲基溴化铵(CTMAB)和阳离子聚丙烯酰胺WD4960(WD4960)的单一调理和联合调理均能不同程度地释放污泥颗粒中的束缚水。污泥经0.13 g·g-1TS中温a-淀粉酶作用1 h后,再投加0.16 g·g-1 TS中性蛋白酶作用4 h,其胞外有机物(EPS)中多糖(PS)、蛋白质(PN)组分含量分别为最低值17.88、218.72 mg·g-1 VSS,但污泥絮体的Zeta电位和粒度均减小,脱水性能恶化。对于复合酶调理后的污泥,再投加0.5 g·g-1 TS CTMAB进行二次调理后,抽滤泥饼含水率降至64.66%;当投加9.64 g·kg-1 TS的WD4960进行二次调理时,污泥的毛细吸水时间(CST)为最小值16.3 s。其中,CTMAB通过电中和、改变污泥絮体的亲疏水性等作用改善复合酶调理后污泥的脱水性能,而WD4960通过电中和、粘附架桥的絮凝作用,但后者释放的束缚水较少。  相似文献   

17.
污水有机组分表征是高负荷活性污泥法(HRAS)模型建立的基础。针对经典活性污泥1号模型不适用于HRAS这一问题,提出了相应的双水解模型,即将污水有机组分中水解型有机物分为快速水解型与慢速水解型2种,发现两者水解动力学参数具有明显差异。对原水氧利用速率进行参数拟合,通过灵敏度和共线性分析,估计了快速生物降解型有机物、快速水解型有机物、慢速水解型有机物以及异养菌等4种污水有机组分,探讨了污水有机组分与增加HRAS碳源捕获率的关系。结果表明:以上4种有机组分均可被准确识别,共线性指数γK低于经验限值,各组分比例分别为13.9%、11.6%、12.6%和12.8%;从污水组分角度来说,提高HRAS碳源捕获率的3个方向分别为:反应器中的异养菌尽可能将快速生物降解型有机物和快速水解型有机物同化生成细胞物质;避免絮体污泥中的慢速水解型有机物过量水解;抑制异养菌衰减,减少内源呼吸产物的产生。双水解模型对污水有机组分成功表征有助于HRAS的设计、运行及优化。  相似文献   

18.
以城市污水厂回流污泥中的硝化细菌(氨氧化细菌和亚硝酸盐氧化细菌)为受试生物,HgCl2为标准毒性物质,通过对两组实验--氨氧化速率实验(NH 4-N→NO-2-N)和亚硝酸盐氧化速率实验(NO-2-N→NO-3-N)的研究表明,氨氧化细菌对HgCl2的灵敏度(IC50=0.034 mmol/L)明显高于亚硝酸盐氧化细菌(IC50=0.20 mmol/L).氨氧化速率法测试活性污泥活性时,使用NH 4-N或NO-X-N指标需要120 min或更长的时间,但使用NO-2-N指标仅需30 min就可完成测试,而且结果重现性要比NH 4-N和NO-X-N好,其变异系数CV为5.9 %.  相似文献   

19.
Mechanical oscillations as well as electrical oscillations (e.g. in an electrical oscillatory circuit) can lead to resonance conditions by external agitation with the natural frequency of the system. During the microbial protein synthesis, the induction and repression mechanisms also cause oscillations in the form of varying protein concentrations. The aim of this work concentrates on an induced resonance case of the biological system, comparable with physical resonance phenomena, by external periodic stimulations. For this, system theoretical computer simulations with a structured genetic model were carried out, which built the theoretical fundament for describing the effect of 'Biological Resonance'. Based on that, lab-scale experiments using a mixed microbial culture (activated sludge) and skimmed milk as an inducing substrate revealed an enhanced microbial productivity of around 60%-75% compared to values of the productivity under steady-state conditions in a narrow range of process parameters. The optimum (resonance case) was confirmed by a repetition of the variation experiments and is characterised by a substrate supply period of approx. 18 min and a following starvation period of about 9 min. Long-term investigations under optimised process conditions indicate adaptation mechanisms of the microorganisms to evade the imposed stress conditions. The productivity will not remain constant without additional stimulation and declines to its original level. However, temporal modulation of the starvation period permanently increases the productivity (elevated catabolism) to about 60%, which was observed over a period of several weeks.  相似文献   

20.
采用活性污泥曝气法降解前后COD差值的方法,进行了BOD快速检测的研究。条件实验结果表明,其适宜检测条件为:降解时间180 min;污泥量5 mL/100 mL;pH值7.0;温度25℃。模拟废水检测结果表明,该测定方法具有较高的重复性,5次测定的相对偏差小于6.5%,在BOD浓度为0~500 mg/L范围内,微生物降解前后COD差值与BOD5有良好的相关性,其相关系数达到0.98。因此,可以通过测定微生物降解前后COD值,实现快速BOD检测的目的,同时,也可实现COD和BOD一体化检测,这将是今后COD和BOD检测研究的发展方向之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号