首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury concentrations in three flatfish species - flounder (Platichtys flesus), plaice (Pleuronectes platessa), and Baltic turbot (Scophthalmus maximus), netted in the southern Baltic Sea were assessed and compared to concentrations of this metal in sediments, sea water, and flatfish food - bivalve Macoma balthica, isopod Saduria entomon, and sprat (Sprattus sprattus). Collected simultaneously with flatfish in 2009 and 2010. Different concentrations of mercury depending on species, tissue or organ, sex, individual length, kind of food, and region were determined. The muscle tissues of turbot had the highest concentrations of the metal. The bioaccumulation (BF) and biomagnification (BMF) factors has been counted showing that the muscle tissues of turbot have maximum affinity for mercury, and thus best reflected the metal contamination of the Baltic Sea environment. The data suggest that the common Baltic turbot (S. maximus) is an important model species, suitable and cost-effective to biomonitor environmental mercury pollution for ecological research.  相似文献   

2.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   

3.
Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km2 before 1950 to >60 000 km2 since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.  相似文献   

4.
Baltic Sea populations of the northern pike (Esox lucius) have declined since the 1990s, and they face additional challenges due to ongoing climate change. Pike in the Baltic Sea spawn either in coastal bays or in freshwater streams and wetlands. Pike recruited in freshwater have been found to make up about 50 % of coastal pike stocks and to show natal homing, thus limiting gene flow among closely located spawning sites. Due to natal homing, sub-populations appear to be locally adapted to their freshwater recruitment environments. Management actions should therefore not involve mixing of individuals originating from different sub-populations. We offer two suggestions complying with this advice: (i) productivity of extant freshwater spawning populations can be boosted by modifying wetlands such that they promote spawning and recruitment; and (ii) new sub-populations that spawn in brackish water can potentially be created by transferring fry and imprinting them on seemingly suitable spawning environments.  相似文献   

5.
In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.  相似文献   

6.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

7.
Environmental Science and Pollution Research - We assessed the abundance of microplastics (0.2–5 mm) in drift line sediments from three sites in Kiel Fjord, Western Baltic...  相似文献   

8.
Climate change scenarios concerning the Baltic Sea predict increase in surface water temperatures. Pikeperch (Sander lucioperca (L.)) inhabits the coastal areas of the northern Baltic Sea and is an important fish species for the Finnish fisheries. The year-class strength of pikeperch varies strongly between years and significantly depends on water temperature. We aimed to study the effects of changing temperature conditions on pikeperch fisheries and distribution based on commercial catch data from the period 1980–2008 in the Finnish coastal areas of the Baltic Sea. The results indicated that warmer summers will produce stronger pikeperch year-classes that consequently contribute significantly to the future catches. The average temperature in June–July explained 40% of the variation in the year-class catches in the Gulf of Finland and 73% in July–August in the Archipelago Sea. During the study period, the distribution of pikeperch catches expanded toward north along the coasts of the Bothnian Sea.  相似文献   

9.
Insecticide resistance is an evolutionary response to insecticides and, as such, important for environmental biomonitoring and for pest management. Fitness disadvantage in the absence of insecticide is a frequent assumption in models of insecticide resistance evolution, which was observed in different insect species. Fitness studies are based in demographic performance of isolated populations without direct interaction between insecticide-resistant and -susceptible populations. Here we reported a study of direct competition following a factorial bivariate design between an insecticide-susceptible population of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), and one of two insecticide-resistant populations - one exhibiting fitness disadvantage based on demographic studies (Juiz de Fora) and other not exhibiting it (Jacarezinho). Total number of insects, mortality by insecticide, insect body mass and respiration rate were recorded after three generations of competition. Indeed, fitness disadvantage was observed in the resistant population from Juiz de Fora, but not in the population from Jacarezinho, as expected. The higher body mass and respiration rate of the insecticide-resistant insects from Jacarezinho are probably mitigating the physiological costs associated with the insecticide resistance minimizing their fitness disadvantage, what does not take place with the insecticide-resistant insects from Juiz de Fora. These distinct responses between the insecticide-resistant populations are probably related to the length and intensity of field-selection with insecticides.  相似文献   

10.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

11.
Metals including Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in muscle tissue of 12 fish species by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold vapour-atomic absorption spectroscopy (CV-AAS). Fish were collected from Vistula River at lower course and Dead Vistula River channel in south of Baltic Sea in Poland. The fish species examined include Round Goby (Neogobius melanostomus), Crucian Carp (Carassius carassius), Bull-rout (Myoxocephalus scorpius), Tench (Tinca tinca), Bream (Abramis brama), Burbot (Lota lot), Perch (Perca perca), Roach (Rutilus rutilus), Silver Carp (Hypophthalmichthys molitrix), Pikeperch (Stizostediun lucioperca), Brown salmon (Salmo trutta m. Trutta) and Eel (Anguilla anguilla). The median values of metal concentrations in fresh muscle tissue of 11 fish species varied as follows: Al < 0.5-60; Ba < 0.05-0.31; Ca 120-1800; Cd < 0.05-0.096; Co < 0.10; Cr < 0.10-0.50; Cu < 0.15-0.77; Fe 1.5-21; Hg 0.0058-0.65; K 1800-4200; Mg 130-560; Mn 0.12-0.59; Na 350-840; Ni < 0.2-0.31; Pb < 0.75; Sr 0.079-2.9; Zn 3.3-23 μg/g fresh weight. The Target Hazard Quotient (THQ) values calculated in this study for Cd and Hg from muscles of fish species collected from Vistula River were low in the range of 0.4 for Hg and 0.8 for Cd.  相似文献   

12.
Denitrification in the river estuaries of the northern Baltic Sea   总被引:3,自引:0,他引:3  
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 micromol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 micromol N m(-2) d(-1) to 910 micromol N m(-2) d(-1) and from 230 micromol N m(-2) d(-1) to 320 micromol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and the estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.  相似文献   

13.
Metals including Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in muscle tissue of 12 fish species by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold vapour-atomic absorption spectroscopy (CV-AAS). Fish were collected from Vistula River at lower course and Dead Vistula River channel in south of Baltic Sea in Poland. The fish species examined include Round Goby (Neogobius melanostomus), Crucian Carp (Carassius carassius), Bull-rout (Myoxocephalus scorpius), Tench (Tinca tinca), Bream (Abramis brama), Burbot (Lota lot), Perch (Perca perca), Roach (Rutilus rutilus), Silver Carp (Hypophthalmichthys molitrix), Pikeperch (Stizostediun lucioperca), Brown salmon (Salmo trutta m. Trutta) and Eel (Anguilla anguilla). The median values of metal concentrations in fresh muscle tissue of 11 fish species varied as follows: Al < 0.5–60; Ba < 0.05–0.31; Ca 120–1800; Cd < 0.05–0.096; Co < 0.10; Cr < 0.10–0.50; Cu < 0.15–0.77; Fe 1.5–21; Hg 0.0058–0.65; K 1800–4200; Mg 130–560; Mn 0.12–0.59; Na 350–840; Ni < 0.2–0.31; Pb < 0.75; Sr 0.079–2.9; Zn 3.3–23 μg/g fresh weight. The Target Hazard Quotient (THQ) values calculated in this study for Cd and Hg from muscles of fish species collected from Vistula River were low in the range of 0.4 for Hg and 0.8 for Cd. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part B to view the free supplemental file.  相似文献   

14.
15.
Robinson LA  Frid CL 《Ambio》2008,37(5):362-371
The organisms living on and in the sea floor, the benthos, represent an important ecological group. Although some (shellfish) have an economic value, most do not, and so little long-term data are available. We have identified three sources of historic benthic data for the North Sea, a regional sea that has been subjected to multiple human impacts for at least several hundred years. Each dataset has its limitations, but by their use together some issues emerge. Wider community shifts were observed in the shorter term and a number of extirpations at the scale of the North Sea were seen over longer time scales. The extirpated taxa share a number of characteristics consistent with an effect of fisheries such as fragile morphology. We must concentrate now on furthering our understanding of the ecological significance of shifts in dominance of particular functional units and protecting those habitats and species most vulnerable to fisheries-driven extirpation.  相似文献   

16.
The cyanobacterial hepatotoxin nodularin is abundantly produced by the cyanobacterium Nodularia spumigena in the Baltic Sea during July-August. Nodularin is a potent hepatotoxin and a tumour promoter, distributed in various Baltic Sea environmental compartments, especially food webs involving mussels. Flounders receive nodularin through consumption of blue mussels. In this study nodularin concentrations in individual flounders (liver) were examined between July and September 2002 (six sample sets, four to 10 samples/set), providing information about contribution of sampling on estimates of bioaccumulation intensity. Toxin was determined using liquid chromatography/mass spectrometry (LC/MS) and enzyme-linked immunosorbent assay (ELISA). Additionally, liver histopathology was examined. Observed toxin concentrations were ND-390 microg kg(-1) dw (LC/MS) and 20-2230 microg kg(-1) dw (ELISA), with maximum concentrations in September (ELISA). The ELISA protocol generally resulted in higher, up to approximately 10-fold, toxin concentrations than LC/MS, with increasing difference toward September. This difference may have originated from different extraction solvents in LC/MS and ELISA, ion suppression in LC/MS, and temporal increase in nodularin metabolites detectable with ELISA. The differences in toxin concentrations between individual liver samples were considerable with relative standard deviation values of 20-154% (LC/MS) and 28-106% (ELISA). Since the precision of the ELISA method employed was <25% and that of LC/MS <10%, it can be concluded that the largest source of error in bioaccumulation estimates may be an inadequate number of samples. Although there were tissue lesions in several liver samples, occurrence of lesions was not related to toxin concentrations.  相似文献   

17.
Vallius H 《Ambio》2006,35(3):105-108
The Gulf of Finland is regularly affected by inflows of anoxic deep-water masses from the northern Baltic proper. These dense water masses advance over large areas with a decline of benthic life in affected areas as a result. Such events have been regularly repeated over decades and centuries. The archipelago, however, is well protected, because the inflows of anoxic deep waters do not enter such shallow waters. The situation could thus be better for benthic life in the archipelago, but in many areas this is not true. In areas where the bottoms are sheltered from storms and currents, permanent anoxia can persist for decades. Such areas were found in the western archipelago of the Gulf of Finland. Examination of surface cores revealed that many of these basins have been continuously anoxic for almost 40 years. A deeper coring showed that, at least locally, shallow water seafloor anoxia has been a fact in the area for thousands of years.  相似文献   

18.

Contamination of soil with pesticides can be evaluated using toxicity tests with worms because their ecological niche makes them good bioindicators. Bioaccumulation in compost worms of [methyl- 14C] paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) was measured after three-month exposure in two substrates with differing physicochemical characteristics, in particular their organic matter and clay contents. The treatments were 1.2, 12, and 120 μg paraquat g?1 substrate. The action of the worms did not influence the loss of 14C from the substrates, as the 14C-recovered was essentially quantitative at the end of the study in both the presence and absence of the worms. The organic matter and clay contents of the substrates determined the extent of the paraquat uptake by the worms; worms from the substrate with smaller amounts of clay and organic matter had the higher values of the bioconcentration factor (BCF), these being about 5 (fresh-weight basis) and independent of the application rate. The BCF values in the substrate containing more organic matter and clay were smaller but increased from 1.1 to 3.8 with the increasing rates of application. However, in both substrates the amounts of paraquat bioaccumulated in the worms was always less than 1% of that applied, indicating the very strong binding of paraquat to the substrates and hence low availability to the worms.  相似文献   

19.
EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus   总被引:22,自引:0,他引:22  
Chen H  Cutright T 《Chemosphere》2001,45(1):21-28
Phytoremediation has shown great potential as an alternative treatment for the remediation of heavy-metal-contaminated soils and groundwater. However, the lack of a clear understanding pertaining to metal uptake/translocation mechanisms, enhancement amendments, and external effects on phytoremediation has hindered its full-scale application. The objective of this research was to investigate the ability of synthetic chelators for enhancing the phytoremediation of cadmium-, chromium- and nickel-contaminated soil. Ethylenediaminetriacetic acid (EDTA) and N-(2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) were applied to the soil at various dosages to elevate metal mobility. Uptake into and translocation within Helianthus annuus was determined. It was found that EDTA at a rate of 0.5 g/kg significantly increased the shoot concentrations of Cd and Ni from 34 and 15 to 115 and 117 mg/kg, respectively. The total removal efficiency for EDTA was 59 microg/plant. HEDTA at the same application rate resulted in a total metal uptake of 42 microg/plant. These research demonstrated that chelator enhancement is plant- and metal-specific and is subjective to inhibition when multiple heavy metals are present. Results also showed that chelator toxicity reduced the plant's biomass, thereby decreasing the amount of metal accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号