首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel water-soluble polymeric photosensitizers based on a natural polymer, naphthalene-modified hydroxyethylcellulose (HENC), were obtained and used for the photooxidation of cyanide. The reaction leads to the formation of cyanate. The process occurs via photoinduced electron transfer from CN to the naphthalene or naphthoquinone polymeric chromophores. The kinetics of the reaction depend on the degree of substitution of HENC, its concentration, and pH of the solution. The polymers can be easily removed after reaction as prolonged irradiation leads to their photodegradation.  相似文献   

2.
Polyisocyanurate foams were prepared from polymeric 4,4-diphenylmethane diisocyanate (MDI), soy polyol and polypropylene oxide polyol by varying isocyanate index from 110 to 350. The higher isocyanate index produced polyisocyanurate foams with higher thermal stability, improved flame resistance, tensile strength, higher modulus, and higher glass transition. Soy-based foams displayed better thermal stability, lower flammability, higher rigidity (modulus) and higher compression strength than those based on the propylene oxide polyols of the same molecular weight and functionality.  相似文献   

3.
Three newly synthesized polymer supported calix[4]arene ionophores (7–9) were synthesized, and their ion binding properties toward selected alkali (Li+, Na+, K+, Cs+) and transition metal (Hg2+, Ni2+, Cu2+, Co2+, Cd2+, and Pb2+) cations were investigated. It has been observed that these ionophores are not selective toward a particular metal cation but show better ion binding property as compared to monomeric calixarene derivatives (2 and 6). Ionophore 6 and its supported polymer were also employed in dichromate anion extraction experiments. The polymeric ionophore (9) was found an effective extractant for dichromate anion even at pH 7.  相似文献   

4.
Today, environment pollution control is a matter of concern, everybody is willing to make a product that should be ecofriendly. Nowadays, water resources are full of untreated waste materials, discharge of hazardous and toxic dyes coming from textile and other chemical industries. These environmental hazards are difficult to remove by commercial water treatment plans, thus we need something that would present an efficient means for removal of these hazards. In this research paper, we have synthesize silver nanoparticle in a green way by using aqueous extract of Allium cepa (onion), and further these silver nanoparticle were tested for the catalytic degradation of various dyes by UV/Visible spectroscopy and silver nanoparticle showed reduction in dyes intensity after a particular period of incubation time. SEM and TEM, Particle size and Zeta potential analysis was done to analyze the surface morphology, particle size range and stability of the silver nanoparticle. Greenly synthesized silver nanoparticle was found to be spherical in shape, having particle size value ranged from 50 to 100 nm with a zeta potential value of ?29 mV. An EDX spectroscopy method was used to confirm the presence of silver nanoparticle in the synthesized material. An X-ray crystallography was done to ensure the crystallinity of the silver nanoparticle. Further an ATR-FTIR was performed to confirm the capping of the silver nanoparticle with the phenolic group of the onion. All these study emphasized that silver nanoparticle capped with onion (AgNPs@Ac) is the excellent catalyst for the reduction of hazardous and toxic dyes as well as they serve best purpose of the eco-friendly approach.  相似文献   

5.
Preparation of polymeric membranes based on cellulose acetate and modified by adding different amounts of a pore generating agent, which was polyvinylpyrrolidone (PVP), is presented and potential application of the membranes obtained for the removal of iron and copper ions from liquid phase is examined. Addition of various amounts of PVP has an impact on the physical (porosity, equilibrium water content and permeability) and chemical (content of the surface oxygen group, pH) properties of the membranes obtained. Filtration of iron and cupper solution leads to significant changes in the total content of surface oxygen groups, however the acidic oxygen groups remain dominant. With the content of PVP increasing within a certain range, the membrane permeability is improved. The membranes obtained show higher efficiency in removal of Fe3+ than Cu2+ ions, but with increasing content of PVP the efficiency in iron ions removal decreases and the total filtration resistance decreases after filtration of iron ions solutions.  相似文献   

6.
The resourceful employment of vegetable oil based polymers in coating applications that yield novel properties, faces challenges usually in their processing. We have developed polyesteramide coatings from linseed (Linnum ussitatissium seeds) oil with improved coating properties. Linseed oil was first converted into N, N-bis 2-hydroxy ethyl linseed oil fatty amide diol (HELA). The resin was synthesized by the reaction of HELA with ethylenediaminetetraacetic acid (EDTA) to develop ethylenediamine polyesteramide (Ed-PEA). The latter was further treated with poly (styrene co-maleic anhydride) (SMA) in different (35–50) phr (part per hundred part of resin) to obtain ambient cured polyesteramide (AC-PEA). The structural elucidation of polymeric resin (AC-PEA) was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Thermal behavior of AC-PEA was studied by thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC). The coatings of AC-PEA were prepared on mild steel strips to investigate their physico-mechanical and anticorrosive behavior (in acid, alkali, water and xylene). It was found that among all the samples, the one having 45 phr of SMA showed the best physico-mechanical and corrosion resistance performance. The thermal stability performance suggests that AC-PEA45 system could be safely used up to 150 °C.  相似文献   

7.
Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups was studied using low temperature pyrolysis mass spectrometry. Specifically, the study analyzed the presence of toxic compounds among the pyrolysis products. The polymers were pyrolyzed directly in the solid probe of a quadruple mass spectrometer within an ion source at a pressure of 10?6 Torr and then sorted by quadrupole mass analyzer. Polyethyl cyanoacrylate degrades by depolymerization, mostly into the ethyl cyanoacrylate monomer units. The degradation of polyurethane produces nonpolymeric urethane, isocyanates, amines and ethers. Polyacrylonitrile degrades via a depolymerization pathway into oligonitriles, acrylonitrile, ammonia and hydrogen cyanide.  相似文献   

8.
Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan intensities decrease as result of restricted chain mobility. Longer exposure time (24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.  相似文献   

9.
The large quantity of wash water used in the electroplating and etching process in the manufacturing of printed circuit boards (PCBs) contains a high level of heavy metal ions (Cu++, Zn++, Ni++, Cr+++, Pb++). These potentially toxic ions are removed from the wash water effluent through a polyelectrolyte flocculation and hydroxide precipitation process during which a hydroxide sediment sludge rich in metal ions and polymers is generated. This sediment sludge possesses some unique characteristics and properties in terms of composition, fine particle size distribution, high specific surface area, and a tendency to agglomerate after drying. Direct disposal of this classified “special waste” (Department of Environment of Northern Ireland, The Special Waste Regulations, Northern Ireland, 1998) at landfill sites may cause serious soil and underground water pollution through a gradual ionic leaching process. This paper describes an experimental investigation, exploratory in nature, which employs microwave radiation for detoxification of the sediment sludge through microwave heating, drying and metal ion immobilization within the sediment solids. The effectiveness of microwave assisted binding and immobilization of the metal ions within the sediment solids was studied in conjunction with an evaluation of microwave energy efficiency in comparison to the more conventional convective heating and drying processes. Given a sufficient amount of microwave radiation, leaching of Cu2+ and Pb2+ was reduced by 2700% and 1080%, respectively, over a period of 12 weeks, and further leaching was not detectable within six months at simulated local landfill aqueous conditions. This paper also attempts, through experimental observation, to add to the very limited understanding of the complex interactions and binding of free metal ions with the polymeric materials and metal hydroxides under the influence of an electromagnetic field. The high specific surface of the sediment solids and their adsorption properties were further explored and characterized in a study of adsorption of reactive dyes by the microwave processed solids.  相似文献   

10.
The effects of a polymeric chain extender on the properties of bioplastic film made from blends of plasticized polylactic acid (p-PLA) and thermoplastic starch (TPS) were studied. Joncryl? ADR 4370S, a polymeric chain extender, was blended with TPS and p-PLA at a level of 1% (w/w). A co-rotating twin-screw extrusion process was used to prepare films with various ratios of TPS and p-PLA. Mechanical and physical properties of films, including film tensile properties, surface energy, moisture content, hydrophilicity, moisture sorption behaviour and thermal mechanical properties were determined. During extrusion, films enhanced by 1% Joncryl addition demonstrated more desirable and consistent qualities, such as smoother film edge and surface. Addition of Joncryl significantly improved film tensile strength, 0.2% offset yield strength, and elongation, especially evident with the 250% elongation of 70/30 (TPS/p-PLA) film. Total surface energy of films was not significantly influenced by addition of Joncryl. However, the polar contribution to the total surface energy of 70/30 (TPS/p-PLA) film increased after the addition of Joncryl. The study showed that blending TPS with p-PLA transformed TPS film from being highly hydrophilic to highly hydrophobic. On the other hand, addition of Joncryl had limited effects on moisture content, water solubility, glass transition temperature and moisture sorption behaviour of TPS/p-PLA blend films.  相似文献   

11.
A modified sequential mass-suspension polymerization was employed to ensure adequate dispersion of lignin into the monomeric phase. Due to its complex macromolecular structure and low compatibility with styrene, eucalyptus wood-extracted lignin, via a modified Kraft method, was esterified with methacrylic anhydride to ensure organic phase homogeneity into the reaction medium. Infrared spectroscopy showed a decrease in the hydroxyl band, a characteristic of natural lignin (3200–3400 cm?1) and an increase in the characteristic ester band (1720–1740 cm?1) whereas nuclear magnetic resonance measurements exhibited intense peaks in the range from 1.7 to 2.05 ppm (–CH3) and 5.4 to 6.2 ppm (=CH2), related to methacrylic anhydride. Comparatively, the esterified lignin also displayed an increase of its glass transition temperature for 98?°C, related to natural lignin, whose T g was determined to be equal to 91?°C. Styrene/lignin-based polymers exhibited higher average molar masses in comparison to the values observed for polystyrene synthesized with similar amounts of benzoyl peroxide, due to the ability of lignin to act as a free-radical scavenger. Composites obtained with styrene and natural or esterified lignin were successfully synthesized, presenting regular morphology and proper lignin dispersion. Based on a very simple polymerization system, it is possible to enhance the final properties of polystyrene through the incorporation of lignin, which represents an important platform for developing attractive polymeric materials from renewable resources.  相似文献   

12.
Cationic hyperbranched oligomer poly(N-acryloyl-1,2-diaminoethane hydrochloride) (HADE) was firstly synthesized by Michael addition reaction. And then, a series of cationic flocculants poly(acrylamide/N-acryloyl-1,2-diaminoethane hydrochlorides) (PAM-HADEs) with hyperbranched structure was prepared from HADE as macro-monomer and acrylamide (AM). The structures of PAM-HADEs were characterized by Fourier transform infrared spectrometry, 1H and 13C nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). And the properties were systematically evaluated by intrinsic viscosity, zeta potential and hydrodynamic radius. The mechanism of the cationic hyperbranched copolymer used in water treatment was extensively studied via a jar test in which the transmittance of the supernatant, settling time, and average floc size were used to evaluate the flocculability. Compared with the linear flocculant poly (acrylamide/liner-N-acryloyl-1,2-diaminoethane hydrochloride) (PAM-LADE), the novel hyperbranched polymeric flocculants exhibited outstanding flocculability which were reflected by shorter settlement time, high transmittance and large floc size. The primary cause that PAM-HADEs owned excellent flocculability is the more stretching configuration and less chains entanglement of PAM-HADEs in waste-water due to their hyperbranched structure compared with that of the linear PAM-LADE which exhibited curly coil configuration. On the other hand, abundant and exposed cationic terminal groups of PAM-HADEs originated from their hyperbranched structure also hint higher flocculation capacity. At optimum dosages of the polymer, the transmittance of the supernatant is less at low and high pH values, indicating that the natural pH (pH 7.29) of the suspension is the most appropriate pH for the flocculation.  相似文献   

13.
Nose-level measurements of air toxics were made along a busy urban street in Ottawa, Canada for 2 hr periods during morning, noon, and afternoon rush hours in the winter and summer of 2000. Measurements were also made in a commuter car and a transit bus during morning and afternoon commutes in 2000. The main objectives of the study were to establish a database, to determine temporal and seasonal variations and to determine the contribution of motor vehicle traffic to the measured toxic substance concentrations. Ottawa is an appropriate choice of location for the measurement of motor vehicle related toxic and reactive compounds, as it has virtually no industrial sources that could be contributing to the ambient loadings. Samples were collected for a total of 165 volatile organic compounds and 25 carbonyl compounds. Sampling and analytical methodologyare discussed and results are presented. Toluene, ethylene andformaldehyde were the most abundant pollutants in Ottawa during both winter and summer. Total non-methane hydrocarbon concentrationwas measured as 100 g m-3 at nose-level measurements in Ottawa.  相似文献   

14.
This paper reports the preparation of chitin/cellulose films compatibilized with polymeric ionic liquids. In-situ (co)polymerization of polymerizable ionic liquids, 1-(3-methacryloyloxypropyl)-3-vinylimidazolium bromide (1) and 1-methyl-3-vinylbenzylimidazolium chloride (3), was carried out in the presence of a radical initiator, AIBN, in the chitin/cellulose solution with ionic liquid solvents (1-butyl-3-methylimidazolium acetate and chloride, BMIMOAc and BMIMCl, respectively), followed by the appropriate procedure to give the desired films. The presence of the polymeric ionic liquid in the film was confirmed by the IR measurement. The powder X-ray diffraction analysis suggested that crystalline structures of the polysaccharides were largely disrupted in the film, as same as that of a chitin/cellulose film prepared by the AMIMOAc/BMIMCl system. These results were different from the XRD result of a chitin/cellulose film prepared by the 1-allyl-3-methylimidazolium bromide/BMIMCl system reported in our previous study, in which some crystalline structures were still remained in the film. Furthermore, the mechanical properties of the present films were evaluated by tensile testing, which were affected by the molar ratios of the polymeric ionic liquids to the polysaccharides and the compositional ratios of the two units 1 and 3.  相似文献   

15.
We describe the results of an aerosol sampling campaign performedin 1999 in the medium-size industrial town of La Spezia, in theNorthwest of Italy. We used two-stage continuous streakersamplers in three different sites and periods of the year. This kind of samplers allows the separation of the PM10 andPM2.2 fractions of the particulate matter. Moreover, the hourly resolution in the aerosol collection is particularly useful inan urban environment where, typically, many pollution sourceswith fast variations are present. Up to 1700 samples have beenanalysed by Particle Induced X-ray Emission (PIXE) at the INFNaccelerator facility in Florence, obtaining hourly concentrationfor about 20 elements from Na to Pb, with a sensitivity rangingfrom below 1 to about 10 ng m-3. The total hourly aerosolmass has been estimated with an optical analysis of the samesamples performed (before the PIXE analysis) by an equipment designed and mounted in Genoa. An extensive statistical analysisof the data included standard and Absolute Principal ComponentFactor Analysis (PCFA and APCFA) to deduce the compositionand the weight of the major aerosol sources in both fractions.Thorough different statistical approaches, we generally resolvedcontributions from vehicle emission, fossil fuel combustion,soil-road dust and sea salt aerosol.  相似文献   

16.
The ASTM D5210-91 protocol for evaluating the biodegradability of a polymer was examined. The reactor design was modified not only to account for the total CO2 evolved but also to allow for the simultaneous carbon assessment in microbes, soluble products, and solid samples. Improvements in the test procedure were implemented such as (1) refining the CO2 pretrap and posttrap design, (2) optimizing the carbon dioxide removal efficiency, (3) accounting for the total polymeric carbon, (4) standardizing the inoculum, and (5) revising the nutrient medium. By growing the sludge on a suitable substrate prior to polymeric exposure, a constant microbial density was obtained. The modified ASTM method provides an assessment of the polymeric carbon degradation at any given time. The results of this work have specific significance to the behavior of polymers in a sewage waste treatment plant, where sludge is continuously being acrated, and also for aerobic biodegradation in general.  相似文献   

17.
The porous composites of clay and fly ash have the potential to be used in many fields, such as catalyst support and gas adsorbents. In this study, various ratios of fly ash (1–2) with different percentage of suspension (50–70 wt%) were applied to produce porous clay-fly ash composites via polymeric replica technique. Fabrication process starts by mixing clay and fly ash in distilled water to form slurry. The process is followed by fully immersing polymer sponge in slurry. The excess slurry is then removed through squeezing. Finally, the sponge coated with slurry is sintered at 500 and 1250 °C for 1 h. It is found that the compressive strength of porous composites improves significantly (0.178–1.28 MPa) when the amount of clay-fly ash suspension mixture (50–70 wt%) increases. The compressive strength of porous composites is mainly attributed to the mullite, quartz and amorphous phase formations. These results are supported by X-ray diffraction analysis. On the other hand, increase in the amount of suspension reduces the apparent density (from 2.44 to 2.32 g/cm3) and porosity (from 97 to 85 %). The reduction in apparent density is believed to be caused by the presence of high fly ash content in porous composites. The melted fly ash cenospheres have closed the internal pores and increased density of samples. Higher suspension level not only reduces porosity, but also increases close pores of the porous composites. The results are justified through the observation from the structures of porous clay-fly ash composites.  相似文献   

18.
This research article describes, an eco-friendly activated carbon prepared from the Gracilaria corticata seaweeds which was employed for the preparation of biodegradable polymeric beads for the efficient removal of crystal violet dye in an aqueous solution. The presence of chemical functional groups in the adsorbent material was detected using FTIR spectroscopy. The morphology and physical phases of the adsorbent materials were analyzed using SEM and XRD studies respectively. Batch mode dye adsorption behavior of the activated carbon/Zn/alginate polymeric beads was investigated as a function of dosage, solution pH, contact time, initial dye concentration and temperature. Maximum dye removal was observed at a pH of 5.0, 1 g of adsorbent dosage with 60 mg/L dye concentration, 50 min of contact time and at 30 °C. The equilibrium modeling studies were analyzed with Freundlich and Langmuir adsorption isotherms and the adsorption dynamics was predicted with Lagergren’s pseudo-first order, pseudo-second order equations and intra particle diffusion models. The process of dye removal followed a pseudo second-order kinetics rather than pseudo first order. The thermodynamic parameters like standard Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined and the results imply that the adsorption process was spontaneous, endothermic and increases the randomness between the adsorbent and adsorbate. The results from the experimental and correlation data reveal that the Gracilaria corticata activated carbon/Zn/alginate polymeric beads have proved to be an excellent adsorbent material for the removal of CV dye.  相似文献   

19.
Fuel consumption and collection costs of solid waste were evaluated by the aid of a simulation model for a given collection area of a medium-sized Italian city. Using the model it is possible to calculate time, collected waste and fuel consumption for a given waste collection route. Starting from the data for the current waste collection scenario with a Source Segregated (SS) intensity of 25%, all the main model error evaluated was ?1.2. SS intensity scenarios of 25%, 30%, 35% and 52% were simulated. Results showed an increase in the average fuel consumed by the collection vehicles that went from about 3.3 L/tonne for 25% SS intensity to about 3.8 L/tonne for a SS intensity of 52%. Direct collection costs, including crews and vehicle purchase, ranged from about 40 €/tonne to about 70 €/tonne, respectively, for 25% and 52% SS intensity. The increase in fuel consumption and collection costs depends on the density of the waste collected, on the collection vehicle compaction ratio and on the waste collection vehicle utilization factor (WCVUF). In particular a reduction of about 50% of the WCVUF can lead to an average increase of about 80% in fuel consumption and 100% in collection costs.  相似文献   

20.
The formulations and evaluation of ROADWAY-2, a near-highway pollutant dispersion model, are described. This model incorporates vehicle wake parameterizations derived from canopy flow theory and wind tunnel measurements. The atmospheric velocity and turbulence fields are adjusted to account for velocity-deficit and turbulence production in vehicle wakes. A turbulent kinetic energy closure model of the atmospheric boundary layer is used to derive the mean velocity, temperature, and turbulence profiles from input meteorological data. ROADWAY-2 has been evaluated using SF6 tracer data from General Motors Sulfate Dispersion Experiment. The model evaluationresults are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号